|
|
|
""" ConvNeXt
|
|
|
|
|
|
|
|
Papers:
|
|
|
|
* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
|
|
|
@Article{liu2022convnet,
|
|
|
|
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
|
|
|
|
title = {A ConvNet for the 2020s},
|
|
|
|
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
|
|
|
year = {2022},
|
|
|
|
}
|
|
|
|
|
|
|
|
* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808
|
|
|
|
@article{Woo2023ConvNeXtV2,
|
|
|
|
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
|
|
|
author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie},
|
|
|
|
year={2023},
|
|
|
|
journal={arXiv preprint arXiv:2301.00808},
|
|
|
|
}
|
|
|
|
|
|
|
|
Original code and weights from:
|
|
|
|
* https://github.com/facebookresearch/ConvNeXt, original copyright below
|
|
|
|
* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below
|
|
|
|
|
|
|
|
Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals.
|
|
|
|
|
|
|
|
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
|
|
|
|
"""
|
|
|
|
# ConvNeXt
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the MIT license
|
|
|
|
|
|
|
|
# ConvNeXt-V2
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0))
|
|
|
|
# No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially.
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
|
|
|
from timm.layers import trunc_normal_, SelectAdaptivePool2d, DropPath, Mlp, GlobalResponseNormMlp, \
|
|
|
|
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
from ._manipulate import named_apply, checkpoint_seq
|
|
|
|
from ._pretrained import generate_default_cfgs
|
|
|
|
from ._registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
|
|
""" ConvNeXt Block
|
|
|
|
There are two equivalent implementations:
|
|
|
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
|
|
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
|
|
|
|
|
|
|
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
|
|
|
|
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
|
|
|
|
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_chs (int): Number of input channels.
|
|
|
|
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
|
|
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs,
|
|
|
|
out_chs=None,
|
|
|
|
kernel_size=7,
|
|
|
|
stride=1,
|
|
|
|
dilation=1,
|
|
|
|
mlp_ratio=4,
|
|
|
|
conv_mlp=False,
|
|
|
|
conv_bias=True,
|
|
|
|
use_grn=False,
|
|
|
|
ls_init_value=1e-6,
|
|
|
|
act_layer='gelu',
|
|
|
|
norm_layer=None,
|
|
|
|
drop_path=0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
out_chs = out_chs or in_chs
|
|
|
|
act_layer = get_act_layer(act_layer)
|
|
|
|
if not norm_layer:
|
|
|
|
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
|
|
|
|
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
|
|
|
|
self.use_conv_mlp = conv_mlp
|
|
|
|
self.conv_dw = create_conv2d(
|
|
|
|
in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, depthwise=True, bias=conv_bias)
|
|
|
|
self.norm = norm_layer(out_chs)
|
|
|
|
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
|
|
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv_dw(x)
|
|
|
|
if self.use_conv_mlp:
|
|
|
|
x = self.norm(x)
|
|
|
|
x = self.mlp(x)
|
|
|
|
else:
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
|
|
x = self.norm(x)
|
|
|
|
x = self.mlp(x)
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
if self.gamma is not None:
|
|
|
|
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
|
|
|
|
|
|
|
x = self.drop_path(x) + shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXtStage(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
kernel_size=7,
|
|
|
|
stride=2,
|
|
|
|
depth=2,
|
|
|
|
dilation=(1, 1),
|
|
|
|
drop_path_rates=None,
|
|
|
|
ls_init_value=1.0,
|
|
|
|
conv_mlp=False,
|
|
|
|
conv_bias=True,
|
|
|
|
use_grn=False,
|
|
|
|
act_layer='gelu',
|
|
|
|
norm_layer=None,
|
|
|
|
norm_layer_cl=None
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
|
|
|
|
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
|
|
|
|
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
|
|
|
|
self.downsample = nn.Sequential(
|
|
|
|
norm_layer(in_chs),
|
|
|
|
create_conv2d(
|
|
|
|
in_chs, out_chs, kernel_size=ds_ks, stride=stride,
|
|
|
|
dilation=dilation[0], padding=pad, bias=conv_bias),
|
|
|
|
)
|
|
|
|
in_chs = out_chs
|
|
|
|
else:
|
|
|
|
self.downsample = nn.Identity()
|
|
|
|
|
|
|
|
drop_path_rates = drop_path_rates or [0.] * depth
|
|
|
|
stage_blocks = []
|
|
|
|
for i in range(depth):
|
|
|
|
stage_blocks.append(ConvNeXtBlock(
|
|
|
|
in_chs=in_chs,
|
|
|
|
out_chs=out_chs,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
dilation=dilation[1],
|
|
|
|
drop_path=drop_path_rates[i],
|
|
|
|
ls_init_value=ls_init_value,
|
|
|
|
conv_mlp=conv_mlp,
|
|
|
|
conv_bias=conv_bias,
|
|
|
|
use_grn=use_grn,
|
|
|
|
act_layer=act_layer,
|
|
|
|
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
|
|
|
|
))
|
|
|
|
in_chs = out_chs
|
|
|
|
self.blocks = nn.Sequential(*stage_blocks)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.downsample(x)
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
x = checkpoint_seq(self.blocks, x)
|
|
|
|
else:
|
|
|
|
x = self.blocks(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXt(nn.Module):
|
|
|
|
r""" ConvNeXt
|
|
|
|
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chans=3,
|
|
|
|
num_classes=1000,
|
|
|
|
global_pool='avg',
|
|
|
|
output_stride=32,
|
|
|
|
depths=(3, 3, 9, 3),
|
|
|
|
dims=(96, 192, 384, 768),
|
|
|
|
kernel_sizes=7,
|
|
|
|
ls_init_value=1e-6,
|
|
|
|
stem_type='patch',
|
|
|
|
patch_size=4,
|
|
|
|
head_init_scale=1.,
|
|
|
|
head_norm_first=False,
|
|
|
|
conv_mlp=False,
|
|
|
|
conv_bias=True,
|
|
|
|
use_grn=False,
|
|
|
|
act_layer='gelu',
|
|
|
|
norm_layer=None,
|
|
|
|
norm_eps=None,
|
|
|
|
drop_rate=0.,
|
|
|
|
drop_path_rate=0.,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
in_chans (int): Number of input image channels (default: 3)
|
|
|
|
num_classes (int): Number of classes for classification head (default: 1000)
|
|
|
|
global_pool (str): Global pooling type (default: 'avg')
|
|
|
|
output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32)
|
|
|
|
depths (tuple(int)): Number of blocks at each stage. (default: [3, 3, 9, 3])
|
|
|
|
dims (tuple(int)): Feature dimension at each stage. (default: [96, 192, 384, 768])
|
|
|
|
kernel_sizes (Union[int, List[int]]: Depthwise convolution kernel-sizes for each stage (default: 7)
|
|
|
|
ls_init_value (float): Init value for Layer Scale (default: 1e-6)
|
|
|
|
stem_type (str): Type of stem (default: 'patch')
|
|
|
|
patch_size (int): Stem patch size for patch stem (default: 4)
|
|
|
|
head_init_scale (float): Init scaling value for classifier weights and biases (default: 1)
|
|
|
|
head_norm_first (bool): Apply normalization before global pool + head (default: False)
|
|
|
|
conv_mlp (bool): Use 1x1 conv in MLP, improves speed for small networks w/ chan last (default: False)
|
|
|
|
conv_bias (bool): Use bias layers w/ all convolutions (default: True)
|
|
|
|
use_grn (bool): Use Global Response Norm (ConvNeXt-V2) in MLP (default: False)
|
|
|
|
act_layer (Union[str, nn.Module]): Activation Layer
|
|
|
|
norm_layer (Union[str, nn.Module]): Normalization Layer
|
|
|
|
drop_rate (float): Head dropout rate (default: 0.)
|
|
|
|
drop_path_rate (float): Stochastic depth rate (default: 0.)
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
assert output_stride in (8, 16, 32)
|
|
|
|
kernel_sizes = to_ntuple(4)(kernel_sizes)
|
|
|
|
if norm_layer is None:
|
|
|
|
norm_layer = LayerNorm2d
|
|
|
|
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
|
|
|
|
if norm_eps is not None:
|
|
|
|
norm_layer = partial(norm_layer, eps=norm_eps)
|
|
|
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
|
|
|
else:
|
|
|
|
assert conv_mlp,\
|
|
|
|
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
|
|
|
|
norm_layer_cl = norm_layer
|
|
|
|
if norm_eps is not None:
|
|
|
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self.feature_info = []
|
|
|
|
|
|
|
|
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
|
|
|
|
if stem_type == 'patch':
|
|
|
|
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
|
|
|
|
self.stem = nn.Sequential(
|
|
|
|
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
|
|
|
|
norm_layer(dims[0]),
|
|
|
|
)
|
|
|
|
stem_stride = patch_size
|
|
|
|
else:
|
|
|
|
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
|
|
|
|
self.stem = nn.Sequential(
|
|
|
|
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
|
|
|
|
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
|
|
|
|
norm_layer(dims[0]),
|
|
|
|
)
|
|
|
|
stem_stride = 4
|
|
|
|
|
|
|
|
self.stages = nn.Sequential()
|
|
|
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
|
|
|
stages = []
|
|
|
|
prev_chs = dims[0]
|
|
|
|
curr_stride = stem_stride
|
|
|
|
dilation = 1
|
|
|
|
# 4 feature resolution stages, each consisting of multiple residual blocks
|
|
|
|
for i in range(4):
|
|
|
|
stride = 2 if curr_stride == 2 or i > 0 else 1
|
|
|
|
if curr_stride >= output_stride and stride > 1:
|
|
|
|
dilation *= stride
|
|
|
|
stride = 1
|
|
|
|
curr_stride *= stride
|
|
|
|
first_dilation = 1 if dilation in (1, 2) else 2
|
|
|
|
out_chs = dims[i]
|
|
|
|
stages.append(ConvNeXtStage(
|
|
|
|
prev_chs,
|
|
|
|
out_chs,
|
|
|
|
kernel_size=kernel_sizes[i],
|
|
|
|
stride=stride,
|
|
|
|
dilation=(first_dilation, dilation),
|
|
|
|
depth=depths[i],
|
|
|
|
drop_path_rates=dp_rates[i],
|
|
|
|
ls_init_value=ls_init_value,
|
|
|
|
conv_mlp=conv_mlp,
|
|
|
|
conv_bias=conv_bias,
|
|
|
|
use_grn=use_grn,
|
|
|
|
act_layer=act_layer,
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
norm_layer_cl=norm_layer_cl,
|
|
|
|
))
|
|
|
|
prev_chs = out_chs
|
|
|
|
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
|
|
|
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
|
|
|
|
self.stages = nn.Sequential(*stages)
|
|
|
|
self.num_features = prev_chs
|
|
|
|
|
|
|
|
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
|
|
|
|
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
|
|
|
|
self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity()
|
|
|
|
self.head = nn.Sequential(OrderedDict([
|
|
|
|
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
|
|
|
|
('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)),
|
|
|
|
('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
|
|
|
|
('drop', nn.Dropout(self.drop_rate)),
|
|
|
|
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))
|
|
|
|
|
|
|
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
return dict(
|
|
|
|
stem=r'^stem',
|
|
|
|
blocks=r'^stages\.(\d+)' if coarse else [
|
|
|
|
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
|
|
|
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
|
|
|
(r'^norm_pre', (99999,))
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
for s in self.stages:
|
|
|
|
s.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes=0, global_pool=None):
|
|
|
|
if global_pool is not None:
|
|
|
|
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
|
|
|
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.stages(x)
|
|
|
|
x = self.norm_pre(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
# NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :(
|
|
|
|
x = self.head.global_pool(x)
|
|
|
|
x = self.head.norm(x)
|
|
|
|
x = self.head.flatten(x)
|
|
|
|
x = self.head.drop(x)
|
|
|
|
return x if pre_logits else self.head.fc(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0):
|
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
|
trunc_normal_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif isinstance(module, nn.Linear):
|
|
|
|
trunc_normal_(module.weight, std=.02)
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
if name and 'head.' in name:
|
|
|
|
module.weight.data.mul_(head_init_scale)
|
|
|
|
module.bias.data.mul_(head_init_scale)
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
""" Remap FB checkpoints -> timm """
|
|
|
|
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
|
|
|
|
return state_dict # non-FB checkpoint
|
|
|
|
if 'model' in state_dict:
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
|
|
|
|
out_dict = {}
|
|
|
|
if 'visual.trunk.stem.0.weight' in state_dict:
|
|
|
|
out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')}
|
|
|
|
if 'visual.head.proj.weight' in state_dict:
|
|
|
|
out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight']
|
|
|
|
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0])
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
import re
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
k = k.replace('downsample_layers.0.', 'stem.')
|
|
|
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
|
|
|
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
|
|
|
|
k = k.replace('dwconv', 'conv_dw')
|
|
|
|
k = k.replace('pwconv', 'mlp.fc')
|
|
|
|
if 'grn' in k:
|
|
|
|
k = k.replace('grn.beta', 'mlp.grn.bias')
|
|
|
|
k = k.replace('grn.gamma', 'mlp.grn.weight')
|
|
|
|
v = v.reshape(v.shape[-1])
|
|
|
|
k = k.replace('head.', 'head.fc.')
|
|
|
|
if k.startswith('norm.'):
|
|
|
|
k = k.replace('norm', 'head.norm')
|
|
|
|
if v.ndim == 2 and 'head' not in k:
|
|
|
|
model_shape = model.state_dict()[k].shape
|
|
|
|
v = v.reshape(model_shape)
|
|
|
|
out_dict[k] = v
|
|
|
|
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _create_convnext(variant, pretrained=False, **kwargs):
|
|
|
|
if kwargs.get('pretrained_cfg', '') == 'fcmae':
|
|
|
|
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
|
|
|
|
# This is workaround loading with num_classes=0 w/o removing norm-layer.
|
|
|
|
kwargs.setdefault('pretrained_strict', False)
|
|
|
|
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
ConvNeXt, variant, pretrained,
|
|
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
|
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def _cfgv2(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
|
|
|
'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808',
|
|
|
|
'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders',
|
|
|
|
'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
|
|
# timm specific variants
|
|
|
|
'convnext_atto.d2_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnext_atto_ols.a2_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnext_femto.d1_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnext_femto_ols.d1_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnext_pico.d1_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnext_pico_ols.d1_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_nano.in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_nano.d1h_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_nano_ols.d1h_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_tiny_hnf.a2h_in1k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_tiny.in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_small.in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
|
|
|
'convnext_tiny.in12k_ft_in1k_384': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnext_small.in12k_ft_in1k_384': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
'convnext_nano.in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, num_classes=11821),
|
|
|
|
'convnext_tiny.in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, num_classes=11821),
|
|
|
|
'convnext_small.in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
crop_pct=0.95, num_classes=11821),
|
|
|
|
|
|
|
|
'convnext_tiny.fb_in1k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_small.fb_in1k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_base.fb_in1k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_large.fb_in1k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_xlarge.untrained': _cfg(),
|
|
|
|
'convnext_xxlarge.untrained': _cfg(),
|
|
|
|
|
|
|
|
'convnext_tiny.fb_in22k_ft_in1k': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_small.fb_in22k_ft_in1k': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_base.fb_in22k_ft_in1k': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_large.fb_in22k_ft_in1k': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnext_xlarge.fb_in22k_ft_in1k': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
|
|
|
'convnext_tiny.fb_in22k_ft_in1k_384': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnext_small.fb_in22k_ft_in1k_384': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnext_base.fb_in22k_ft_in1k_384': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnext_large.fb_in22k_ft_in1k_384': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
'convnext_tiny.fb_in22k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=21841),
|
|
|
|
'convnext_small.fb_in22k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=21841),
|
|
|
|
'convnext_base.fb_in22k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=21841),
|
|
|
|
'convnext_large.fb_in22k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=21841),
|
|
|
|
'convnext_xlarge.fb_in22k': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=21841),
|
|
|
|
|
|
|
|
'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
'convnextv2_atto.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnextv2_femto.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnextv2_pico.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
|
|
'convnextv2_nano.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_tiny.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_base.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_large.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
'convnextv2_huge.fcmae_ft_in1k': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
|
|
|
|
|
|
'convnextv2_atto.fcmae': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_femto.fcmae': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_pico.fcmae': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_nano.fcmae': _cfgv2(
|
|
|
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt',
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_tiny.fcmae': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_base.fcmae': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_large.fcmae': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
'convnextv2_huge.fcmae': _cfgv2(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt",
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=0),
|
|
|
|
|
|
|
|
'convnextv2_small.untrained': _cfg(),
|
|
|
|
|
|
|
|
# CLIP based weights, original image tower weights and fine-tunes
|
|
|
|
'convnext_base.clip_laion2b': _cfg(
|
|
|
|
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K',
|
|
|
|
hf_hub_filename='open_clip_pytorch_model.bin',
|
|
|
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
|
|
|
|
'convnext_base.clip_laion2b_augreg': _cfg(
|
|
|
|
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg',
|
|
|
|
hf_hub_filename='open_clip_pytorch_model.bin',
|
|
|
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
|
|
|
|
'convnext_base.clip_laiona': _cfg(
|
|
|
|
hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K',
|
|
|
|
hf_hub_filename='open_clip_pytorch_model.bin',
|
|
|
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
|
|
|
|
'convnext_base.clip_laiona_320': _cfg(
|
|
|
|
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K',
|
|
|
|
hf_hub_filename='open_clip_pytorch_model.bin',
|
|
|
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
|
|
|
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
|
|
|
|
'convnext_base.clip_laiona_augreg_320': _cfg(
|
|
|
|
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg',
|
|
|
|
hf_hub_filename='open_clip_pytorch_model.bin',
|
|
|
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
|
|
|
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_atto(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnext_atto', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_atto_ols(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered', **kwargs)
|
|
|
|
model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_femto(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnext_femto', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_femto_ols(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered', **kwargs)
|
|
|
|
model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_pico(pretrained=False, **kwargs):
|
|
|
|
# timm pico variant
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnext_pico', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_pico_ols(pretrained=False, **kwargs):
|
|
|
|
# timm nano variant with overlapping 3x3 conv stem
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered', **kwargs)
|
|
|
|
model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_nano(pretrained=False, **kwargs):
|
|
|
|
# timm nano variant with standard stem and head
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnext_nano', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_nano_ols(pretrained=False, **kwargs):
|
|
|
|
# experimental nano variant with overlapping conv stem
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap', **kwargs)
|
|
|
|
model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_tiny_hnf(pretrained=False, **kwargs):
|
|
|
|
# experimental tiny variant with norm before pooling in head (head norm first)
|
|
|
|
model_args = dict(
|
|
|
|
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_tiny(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
|
|
|
|
model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_small(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
|
|
|
|
model = _create_convnext('convnext_small', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_base(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
|
|
|
model = _create_convnext('convnext_base', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_large(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
|
|
|
|
model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_xlarge(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
|
|
|
|
model = _create_convnext('convnext_xlarge', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_xxlarge(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], **kwargs)
|
|
|
|
model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_atto(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_atto', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_femto(pretrained=False, **kwargs):
|
|
|
|
# timm femto variant
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_femto', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_pico(pretrained=False, **kwargs):
|
|
|
|
# timm pico variant
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_pico', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_nano(pretrained=False, **kwargs):
|
|
|
|
# timm nano variant with standard stem and head
|
|
|
|
model_args = dict(
|
|
|
|
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_nano', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_tiny(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(
|
|
|
|
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_small(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_small', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_base(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_base', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_large(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_large', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnextv2_huge(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None, **kwargs)
|
|
|
|
model = _create_convnext('convnextv2_huge', pretrained=pretrained, **model_args)
|
|
|
|
return model
|