|
|
|
"""RegNet
|
|
|
|
|
|
|
|
Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678
|
|
|
|
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
|
|
|
|
|
|
|
|
Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here)
|
|
|
|
and cleaned up with more descriptive variable names.
|
|
|
|
|
|
|
|
Weights from original impl have been modified
|
|
|
|
* first layer from BGR -> RGB as most PyTorch models are
|
|
|
|
* removed training specific dict entries from checkpoints and keep model state_dict only
|
|
|
|
* remap names to match the ones here
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
from dataclasses import dataclass, replace
|
|
|
|
from functools import partial
|
|
|
|
from typing import Optional, Union, Callable
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from timm.layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, GroupNormAct
|
|
|
|
from timm.layers import get_act_layer, get_norm_act_layer, create_conv2d
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
from ._manipulate import checkpoint_seq, named_apply
|
|
|
|
from ._registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['RegNet', 'RegNetCfg'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class RegNetCfg:
|
|
|
|
depth: int = 21
|
|
|
|
w0: int = 80
|
|
|
|
wa: float = 42.63
|
|
|
|
wm: float = 2.66
|
|
|
|
group_size: int = 24
|
|
|
|
bottle_ratio: float = 1.
|
|
|
|
se_ratio: float = 0.
|
|
|
|
stem_width: int = 32
|
|
|
|
downsample: Optional[str] = 'conv1x1'
|
|
|
|
linear_out: bool = False
|
|
|
|
preact: bool = False
|
|
|
|
num_features: int = 0
|
|
|
|
act_layer: Union[str, Callable] = 'relu'
|
|
|
|
norm_layer: Union[str, Callable] = 'batchnorm'
|
|
|
|
|
|
|
|
|
|
|
|
# Model FLOPS = three trailing digits * 10^8
|
|
|
|
model_cfgs = dict(
|
|
|
|
# RegNet-X
|
|
|
|
regnetx_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13),
|
|
|
|
regnetx_004=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22),
|
|
|
|
regnetx_006=RegNetCfg(w0=48, wa=36.97, wm=2.24, group_size=24, depth=16),
|
|
|
|
regnetx_008=RegNetCfg(w0=56, wa=35.73, wm=2.28, group_size=16, depth=16),
|
|
|
|
regnetx_016=RegNetCfg(w0=80, wa=34.01, wm=2.25, group_size=24, depth=18),
|
|
|
|
regnetx_032=RegNetCfg(w0=88, wa=26.31, wm=2.25, group_size=48, depth=25),
|
|
|
|
regnetx_040=RegNetCfg(w0=96, wa=38.65, wm=2.43, group_size=40, depth=23),
|
|
|
|
regnetx_064=RegNetCfg(w0=184, wa=60.83, wm=2.07, group_size=56, depth=17),
|
|
|
|
regnetx_080=RegNetCfg(w0=80, wa=49.56, wm=2.88, group_size=120, depth=23),
|
|
|
|
regnetx_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19),
|
|
|
|
regnetx_160=RegNetCfg(w0=216, wa=55.59, wm=2.1, group_size=128, depth=22),
|
|
|
|
regnetx_320=RegNetCfg(w0=320, wa=69.86, wm=2.0, group_size=168, depth=23),
|
|
|
|
|
|
|
|
# RegNet-Y
|
|
|
|
regnety_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13, se_ratio=0.25),
|
|
|
|
regnety_004=RegNetCfg(w0=48, wa=27.89, wm=2.09, group_size=8, depth=16, se_ratio=0.25),
|
|
|
|
regnety_006=RegNetCfg(w0=48, wa=32.54, wm=2.32, group_size=16, depth=15, se_ratio=0.25),
|
|
|
|
regnety_008=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25),
|
|
|
|
regnety_016=RegNetCfg(w0=48, wa=20.71, wm=2.65, group_size=24, depth=27, se_ratio=0.25),
|
|
|
|
regnety_032=RegNetCfg(w0=80, wa=42.63, wm=2.66, group_size=24, depth=21, se_ratio=0.25),
|
|
|
|
regnety_040=RegNetCfg(w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25),
|
|
|
|
regnety_064=RegNetCfg(w0=112, wa=33.22, wm=2.27, group_size=72, depth=25, se_ratio=0.25),
|
|
|
|
regnety_080=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25),
|
|
|
|
regnety_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19, se_ratio=0.25),
|
|
|
|
regnety_160=RegNetCfg(w0=200, wa=106.23, wm=2.48, group_size=112, depth=18, se_ratio=0.25),
|
|
|
|
regnety_320=RegNetCfg(w0=232, wa=115.89, wm=2.53, group_size=232, depth=20, se_ratio=0.25),
|
|
|
|
regnety_640=RegNetCfg(w0=352, wa=147.48, wm=2.4, group_size=328, depth=20, se_ratio=0.25),
|
|
|
|
regnety_1280=RegNetCfg(w0=456, wa=160.83, wm=2.52, group_size=264, depth=27, se_ratio=0.25),
|
|
|
|
regnety_2560=RegNetCfg(w0=640, wa=124.47, wm=2.04, group_size=848, depth=27, se_ratio=0.25),
|
|
|
|
|
|
|
|
# Experimental
|
|
|
|
regnety_040s_gn=RegNetCfg(
|
|
|
|
w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25,
|
|
|
|
act_layer='silu', norm_layer=partial(GroupNormAct, group_size=16)),
|
|
|
|
|
|
|
|
# regnetv = 'preact regnet y'
|
|
|
|
regnetv_040=RegNetCfg(
|
|
|
|
depth=22, w0=96, wa=31.41, wm=2.24, group_size=64, se_ratio=0.25, preact=True, act_layer='silu'),
|
|
|
|
regnetv_064=RegNetCfg(
|
|
|
|
depth=25, w0=112, wa=33.22, wm=2.27, group_size=72, se_ratio=0.25, preact=True, act_layer='silu',
|
|
|
|
downsample='avg'),
|
|
|
|
|
|
|
|
# RegNet-Z (unverified)
|
|
|
|
regnetz_005=RegNetCfg(
|
|
|
|
depth=21, w0=16, wa=10.7, wm=2.51, group_size=4, bottle_ratio=4.0, se_ratio=0.25,
|
|
|
|
downsample=None, linear_out=True, num_features=1024, act_layer='silu',
|
|
|
|
),
|
|
|
|
regnetz_040=RegNetCfg(
|
|
|
|
depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25,
|
|
|
|
downsample=None, linear_out=True, num_features=0, act_layer='silu',
|
|
|
|
),
|
|
|
|
regnetz_040h=RegNetCfg(
|
|
|
|
depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25,
|
|
|
|
downsample=None, linear_out=True, num_features=1536, act_layer='silu',
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = dict(
|
|
|
|
regnetx_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth'),
|
|
|
|
regnetx_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth'),
|
|
|
|
regnetx_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth'),
|
|
|
|
regnetx_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth'),
|
|
|
|
regnetx_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth'),
|
|
|
|
regnetx_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth'),
|
|
|
|
regnetx_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth'),
|
|
|
|
regnetx_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth'),
|
|
|
|
regnetx_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth'),
|
|
|
|
regnetx_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth'),
|
|
|
|
regnetx_160=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth'),
|
|
|
|
regnetx_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth'),
|
|
|
|
|
|
|
|
regnety_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth'),
|
|
|
|
regnety_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth'),
|
|
|
|
regnety_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth'),
|
|
|
|
regnety_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth'),
|
|
|
|
regnety_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth'),
|
|
|
|
regnety_032=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth',
|
|
|
|
crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnety_040=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_040_ra3-670e1166.pth',
|
|
|
|
crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnety_064=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_064_ra3-aa26dc7d.pth',
|
|
|
|
crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnety_080=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_080_ra3-1fdc4344.pth',
|
|
|
|
crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnety_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth'),
|
|
|
|
regnety_160=_cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth', # from Facebook DeiT GitHub repository
|
|
|
|
crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnety_320=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'
|
|
|
|
),
|
|
|
|
regnety_640=_cfg(url=''),
|
|
|
|
regnety_1280=_cfg(url=''),
|
|
|
|
regnety_2560=_cfg(url=''),
|
|
|
|
|
|
|
|
regnety_040s_gn=_cfg(url=''),
|
|
|
|
regnetv_040=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_040_ra3-c248f51f.pth',
|
|
|
|
first_conv='stem', crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
regnetv_064=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_064_ra3-530616c2.pth',
|
|
|
|
first_conv='stem', crop_pct=1.0, test_input_size=(3, 288, 288)),
|
|
|
|
|
|
|
|
regnetz_005=_cfg(url=''),
|
|
|
|
regnetz_040=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040_ra3-9007edf5.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)),
|
|
|
|
regnetz_040h=_cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040h_ra3-f594343b.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def quantize_float(f, q):
|
|
|
|
"""Converts a float to closest non-zero int divisible by q."""
|
|
|
|
return int(round(f / q) * q)
|
|
|
|
|
|
|
|
|
|
|
|
def adjust_widths_groups_comp(widths, bottle_ratios, groups):
|
|
|
|
"""Adjusts the compatibility of widths and groups."""
|
|
|
|
bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)]
|
|
|
|
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)]
|
|
|
|
bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)]
|
|
|
|
widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)]
|
|
|
|
return widths, groups
|
|
|
|
|
|
|
|
|
|
|
|
def generate_regnet(width_slope, width_initial, width_mult, depth, group_size, q=8):
|
|
|
|
"""Generates per block widths from RegNet parameters."""
|
|
|
|
assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % q == 0
|
|
|
|
# TODO dWr scaling?
|
|
|
|
# depth = int(depth * (scale ** 0.1))
|
|
|
|
# width_scale = scale ** 0.4 # dWr scale, exp 0.8 / 2, applied to both group and layer widths
|
|
|
|
widths_cont = np.arange(depth) * width_slope + width_initial
|
|
|
|
width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult))
|
|
|
|
widths = width_initial * np.power(width_mult, width_exps)
|
|
|
|
widths = np.round(np.divide(widths, q)) * q
|
|
|
|
num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1
|
|
|
|
groups = np.array([group_size for _ in range(num_stages)])
|
|
|
|
return widths.astype(int).tolist(), num_stages, groups.astype(int).tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def downsample_conv(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False):
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
|
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size
|
|
|
|
dilation = dilation if kernel_size > 1 else 1
|
|
|
|
if preact:
|
|
|
|
return create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation)
|
|
|
|
else:
|
|
|
|
return ConvNormAct(
|
|
|
|
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, apply_act=False)
|
|
|
|
|
|
|
|
|
|
|
|
def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False):
|
|
|
|
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
|
|
|
|
norm_layer = norm_layer or nn.BatchNorm2d
|
|
|
|
avg_stride = stride if dilation == 1 else 1
|
|
|
|
pool = nn.Identity()
|
|
|
|
if stride > 1 or dilation > 1:
|
|
|
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
|
|
|
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
|
|
|
if preact:
|
|
|
|
conv = create_conv2d(in_chs, out_chs, 1, stride=1)
|
|
|
|
else:
|
|
|
|
conv = ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False)
|
|
|
|
return nn.Sequential(*[pool, conv])
|
|
|
|
|
|
|
|
|
|
|
|
def create_shortcut(
|
|
|
|
downsample_type,
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
kernel_size,
|
|
|
|
stride,
|
|
|
|
dilation=(1, 1),
|
|
|
|
norm_layer=None,
|
|
|
|
preact=False,
|
|
|
|
):
|
|
|
|
assert downsample_type in ('avg', 'conv1x1', '', None)
|
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
|
|
|
dargs = dict(stride=stride, dilation=dilation[0], norm_layer=norm_layer, preact=preact)
|
|
|
|
if not downsample_type:
|
|
|
|
return None # no shortcut, no downsample
|
|
|
|
elif downsample_type == 'avg':
|
|
|
|
return downsample_avg(in_chs, out_chs, **dargs)
|
|
|
|
else:
|
|
|
|
return downsample_conv(in_chs, out_chs, kernel_size=kernel_size, **dargs)
|
|
|
|
else:
|
|
|
|
return nn.Identity() # identity shortcut (no downsample)
|
|
|
|
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
|
|
""" RegNet Bottleneck
|
|
|
|
|
|
|
|
This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from
|
|
|
|
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=1,
|
|
|
|
dilation=(1, 1),
|
|
|
|
bottle_ratio=1,
|
|
|
|
group_size=1,
|
|
|
|
se_ratio=0.25,
|
|
|
|
downsample='conv1x1',
|
|
|
|
linear_out=False,
|
|
|
|
act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d,
|
|
|
|
drop_block=None,
|
|
|
|
drop_path_rate=0.,
|
|
|
|
):
|
|
|
|
super(Bottleneck, self).__init__()
|
|
|
|
act_layer = get_act_layer(act_layer)
|
|
|
|
bottleneck_chs = int(round(out_chs * bottle_ratio))
|
|
|
|
groups = bottleneck_chs // group_size
|
|
|
|
|
|
|
|
cargs = dict(act_layer=act_layer, norm_layer=norm_layer)
|
|
|
|
self.conv1 = ConvNormAct(in_chs, bottleneck_chs, kernel_size=1, **cargs)
|
|
|
|
self.conv2 = ConvNormAct(
|
|
|
|
bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0],
|
|
|
|
groups=groups, drop_layer=drop_block, **cargs)
|
|
|
|
if se_ratio:
|
|
|
|
se_channels = int(round(in_chs * se_ratio))
|
|
|
|
self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer)
|
|
|
|
else:
|
|
|
|
self.se = nn.Identity()
|
|
|
|
self.conv3 = ConvNormAct(bottleneck_chs, out_chs, kernel_size=1, apply_act=False, **cargs)
|
|
|
|
self.act3 = nn.Identity() if linear_out else act_layer()
|
|
|
|
self.downsample = create_shortcut(downsample, in_chs, out_chs, 1, stride, dilation, norm_layer=norm_layer)
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def zero_init_last(self):
|
|
|
|
nn.init.zeros_(self.conv3.bn.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.se(x)
|
|
|
|
x = self.conv3(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
# NOTE stuck with downsample as the attr name due to weight compatibility
|
|
|
|
# now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity()
|
|
|
|
x = self.drop_path(x) + self.downsample(shortcut)
|
|
|
|
x = self.act3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class PreBottleneck(nn.Module):
|
|
|
|
""" RegNet Bottleneck
|
|
|
|
|
|
|
|
This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from
|
|
|
|
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=1,
|
|
|
|
dilation=(1, 1),
|
|
|
|
bottle_ratio=1,
|
|
|
|
group_size=1,
|
|
|
|
se_ratio=0.25,
|
|
|
|
downsample='conv1x1',
|
|
|
|
linear_out=False,
|
|
|
|
act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d,
|
|
|
|
drop_block=None,
|
|
|
|
drop_path_rate=0.,
|
|
|
|
):
|
|
|
|
super(PreBottleneck, self).__init__()
|
|
|
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
|
|
|
|
bottleneck_chs = int(round(out_chs * bottle_ratio))
|
|
|
|
groups = bottleneck_chs // group_size
|
|
|
|
|
|
|
|
self.norm1 = norm_act_layer(in_chs)
|
|
|
|
self.conv1 = create_conv2d(in_chs, bottleneck_chs, kernel_size=1)
|
|
|
|
self.norm2 = norm_act_layer(bottleneck_chs)
|
|
|
|
self.conv2 = create_conv2d(
|
|
|
|
bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups)
|
|
|
|
if se_ratio:
|
|
|
|
se_channels = int(round(in_chs * se_ratio))
|
|
|
|
self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer)
|
|
|
|
else:
|
|
|
|
self.se = nn.Identity()
|
|
|
|
self.norm3 = norm_act_layer(bottleneck_chs)
|
|
|
|
self.conv3 = create_conv2d(bottleneck_chs, out_chs, kernel_size=1)
|
|
|
|
self.downsample = create_shortcut(downsample, in_chs, out_chs, 1, stride, dilation, preact=True)
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def zero_init_last(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.norm1(x)
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.norm2(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.se(x)
|
|
|
|
x = self.norm3(x)
|
|
|
|
x = self.conv3(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
# NOTE stuck with downsample as the attr name due to weight compatibility
|
|
|
|
# now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity()
|
|
|
|
x = self.drop_path(x) + self.downsample(shortcut)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class RegStage(nn.Module):
|
|
|
|
"""Stage (sequence of blocks w/ the same output shape)."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
depth,
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride,
|
|
|
|
dilation,
|
|
|
|
drop_path_rates=None,
|
|
|
|
block_fn=Bottleneck,
|
|
|
|
**block_kwargs,
|
|
|
|
):
|
|
|
|
super(RegStage, self).__init__()
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
first_dilation = 1 if dilation in (1, 2) else 2
|
|
|
|
for i in range(depth):
|
|
|
|
block_stride = stride if i == 0 else 1
|
|
|
|
block_in_chs = in_chs if i == 0 else out_chs
|
|
|
|
block_dilation = (first_dilation, dilation)
|
|
|
|
dpr = drop_path_rates[i] if drop_path_rates is not None else 0.
|
|
|
|
name = "b{}".format(i + 1)
|
|
|
|
self.add_module(
|
|
|
|
name, block_fn(
|
|
|
|
block_in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=block_stride,
|
|
|
|
dilation=block_dilation,
|
|
|
|
drop_path_rate=dpr,
|
|
|
|
**block_kwargs,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
first_dilation = dilation
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
x = checkpoint_seq(self.children(), x)
|
|
|
|
else:
|
|
|
|
for block in self.children():
|
|
|
|
x = block(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class RegNet(nn.Module):
|
|
|
|
"""RegNet-X, Y, and Z Models
|
|
|
|
|
|
|
|
Paper: https://arxiv.org/abs/2003.13678
|
|
|
|
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
cfg: RegNetCfg,
|
|
|
|
in_chans=3,
|
|
|
|
num_classes=1000,
|
|
|
|
output_stride=32,
|
|
|
|
global_pool='avg',
|
|
|
|
drop_rate=0.,
|
|
|
|
drop_path_rate=0.,
|
|
|
|
zero_init_last=True,
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cfg (RegNetCfg): Model architecture configuration
|
|
|
|
in_chans (int): Number of input channels (default: 3)
|
|
|
|
num_classes (int): Number of classifier classes (default: 1000)
|
|
|
|
output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32)
|
|
|
|
global_pool (str): Global pooling type (default: 'avg')
|
|
|
|
drop_rate (float): Dropout rate (default: 0.)
|
|
|
|
drop_path_rate (float): Stochastic depth drop-path rate (default: 0.)
|
|
|
|
zero_init_last (bool): Zero-init last weight of residual path
|
|
|
|
kwargs (dict): Extra kwargs overlayed onto cfg
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
assert output_stride in (8, 16, 32)
|
|
|
|
cfg = replace(cfg, **kwargs) # update cfg with extra passed kwargs
|
|
|
|
|
|
|
|
# Construct the stem
|
|
|
|
stem_width = cfg.stem_width
|
|
|
|
na_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer)
|
|
|
|
if cfg.preact:
|
|
|
|
self.stem = create_conv2d(in_chans, stem_width, 3, stride=2)
|
|
|
|
else:
|
|
|
|
self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, **na_args)
|
|
|
|
self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')]
|
|
|
|
|
|
|
|
# Construct the stages
|
|
|
|
prev_width = stem_width
|
|
|
|
curr_stride = 2
|
|
|
|
per_stage_args, common_args = self._get_stage_args(
|
|
|
|
cfg, output_stride=output_stride, drop_path_rate=drop_path_rate)
|
|
|
|
assert len(per_stage_args) == 4
|
|
|
|
block_fn = PreBottleneck if cfg.preact else Bottleneck
|
|
|
|
for i, stage_args in enumerate(per_stage_args):
|
|
|
|
stage_name = "s{}".format(i + 1)
|
|
|
|
self.add_module(stage_name, RegStage(in_chs=prev_width, block_fn=block_fn, **stage_args, **common_args))
|
|
|
|
prev_width = stage_args['out_chs']
|
|
|
|
curr_stride *= stage_args['stride']
|
|
|
|
self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)]
|
|
|
|
|
|
|
|
# Construct the head
|
|
|
|
if cfg.num_features:
|
|
|
|
self.final_conv = ConvNormAct(prev_width, cfg.num_features, kernel_size=1, **na_args)
|
|
|
|
self.num_features = cfg.num_features
|
|
|
|
else:
|
|
|
|
final_act = cfg.linear_out or cfg.preact
|
|
|
|
self.final_conv = get_act_layer(cfg.act_layer)() if final_act else nn.Identity()
|
|
|
|
self.num_features = prev_width
|
|
|
|
self.head = ClassifierHead(
|
|
|
|
in_features=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
|
|
|
|
|
|
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
|
|
|
|
|
|
|
|
def _get_stage_args(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.):
|
|
|
|
# Generate RegNet ws per block
|
|
|
|
widths, num_stages, stage_gs = generate_regnet(cfg.wa, cfg.w0, cfg.wm, cfg.depth, cfg.group_size)
|
|
|
|
|
|
|
|
# Convert to per stage format
|
|
|
|
stage_widths, stage_depths = np.unique(widths, return_counts=True)
|
|
|
|
stage_br = [cfg.bottle_ratio for _ in range(num_stages)]
|
|
|
|
stage_strides = []
|
|
|
|
stage_dilations = []
|
|
|
|
net_stride = 2
|
|
|
|
dilation = 1
|
|
|
|
for _ in range(num_stages):
|
|
|
|
if net_stride >= output_stride:
|
|
|
|
dilation *= default_stride
|
|
|
|
stride = 1
|
|
|
|
else:
|
|
|
|
stride = default_stride
|
|
|
|
net_stride *= stride
|
|
|
|
stage_strides.append(stride)
|
|
|
|
stage_dilations.append(dilation)
|
|
|
|
stage_dpr = np.split(np.linspace(0, drop_path_rate, sum(stage_depths)), np.cumsum(stage_depths[:-1]))
|
|
|
|
|
|
|
|
# Adjust the compatibility of ws and gws
|
|
|
|
stage_widths, stage_gs = adjust_widths_groups_comp(stage_widths, stage_br, stage_gs)
|
|
|
|
arg_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates']
|
|
|
|
per_stage_args = [
|
|
|
|
dict(zip(arg_names, params)) for params in
|
|
|
|
zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_br, stage_gs, stage_dpr)]
|
|
|
|
common_args = dict(
|
|
|
|
downsample=cfg.downsample,
|
|
|
|
se_ratio=cfg.se_ratio,
|
|
|
|
linear_out=cfg.linear_out,
|
|
|
|
act_layer=cfg.act_layer,
|
|
|
|
norm_layer=cfg.norm_layer,
|
|
|
|
)
|
|
|
|
return per_stage_args, common_args
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
return dict(
|
|
|
|
stem=r'^stem',
|
|
|
|
blocks=r'^s(\d+)' if coarse else r'^s(\d+)\.b(\d+)',
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
for s in list(self.children())[1:-1]:
|
|
|
|
s.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.s1(x)
|
|
|
|
x = self.s2(x)
|
|
|
|
x = self.s3(x)
|
|
|
|
x = self.s4(x)
|
|
|
|
x = self.final_conv(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(module, name='', zero_init_last=False):
|
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
|
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
|
|
|
|
fan_out //= module.groups
|
|
|
|
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
|
|
if module.bias is not None:
|
|
|
|
module.bias.data.zero_()
|
|
|
|
elif isinstance(module, nn.Linear):
|
|
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif zero_init_last and hasattr(module, 'zero_init_last'):
|
|
|
|
module.zero_init_last()
|
|
|
|
|
|
|
|
|
|
|
|
def _filter_fn(state_dict):
|
|
|
|
if 'classy_state_dict' in state_dict:
|
|
|
|
import re
|
|
|
|
state_dict = state_dict['classy_state_dict']['base_model']['model']
|
|
|
|
out = {}
|
|
|
|
for k, v in state_dict['trunk'].items():
|
|
|
|
k = k.replace('_feature_blocks.conv1.stem.0', 'stem.conv')
|
|
|
|
k = k.replace('_feature_blocks.conv1.stem.1', 'stem.bn')
|
|
|
|
k = re.sub(
|
|
|
|
r'^_feature_blocks.res\d.block(\d)-(\d+)',
|
|
|
|
lambda x: f's{int(x.group(1))}.b{int(x.group(2)) + 1}', k)
|
|
|
|
k = re.sub(r's(\d)\.b(\d+)\.bn', r's\1.b\2.downsample.bn', k)
|
|
|
|
k = k.replace('proj', 'downsample.conv')
|
|
|
|
k = k.replace('f.a.0', 'conv1.conv')
|
|
|
|
k = k.replace('f.a.1', 'conv1.bn')
|
|
|
|
k = k.replace('f.b.0', 'conv2.conv')
|
|
|
|
k = k.replace('f.b.1', 'conv2.bn')
|
|
|
|
k = k.replace('f.c', 'conv3.conv')
|
|
|
|
k = k.replace('f.final_bn', 'conv3.bn')
|
|
|
|
k = k.replace('f.se.excitation.0', 'se.fc1')
|
|
|
|
k = k.replace('f.se.excitation.2', 'se.fc2')
|
|
|
|
out[k] = v
|
|
|
|
for k, v in state_dict['heads'].items():
|
|
|
|
if 'projection_head' in k or 'prototypes' in k:
|
|
|
|
continue
|
|
|
|
k = k.replace('0.clf.0', 'head.fc')
|
|
|
|
out[k] = v
|
|
|
|
return out
|
|
|
|
|
|
|
|
if 'model' in state_dict:
|
|
|
|
# For DeiT trained regnety_160 pretraiend model
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _create_regnet(variant, pretrained, **kwargs):
|
|
|
|
return build_model_with_cfg(
|
|
|
|
RegNet, variant, pretrained,
|
|
|
|
model_cfg=model_cfgs[variant],
|
|
|
|
pretrained_filter_fn=_filter_fn,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_002(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-200MF"""
|
|
|
|
return _create_regnet('regnetx_002', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_004(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-400MF"""
|
|
|
|
return _create_regnet('regnetx_004', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_006(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-600MF"""
|
|
|
|
return _create_regnet('regnetx_006', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_008(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-800MF"""
|
|
|
|
return _create_regnet('regnetx_008', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_016(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-1.6GF"""
|
|
|
|
return _create_regnet('regnetx_016', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_032(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-3.2GF"""
|
|
|
|
return _create_regnet('regnetx_032', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_040(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-4.0GF"""
|
|
|
|
return _create_regnet('regnetx_040', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_064(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-6.4GF"""
|
|
|
|
return _create_regnet('regnetx_064', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_080(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-8.0GF"""
|
|
|
|
return _create_regnet('regnetx_080', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_120(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-12GF"""
|
|
|
|
return _create_regnet('regnetx_120', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_160(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-16GF"""
|
|
|
|
return _create_regnet('regnetx_160', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetx_320(pretrained=False, **kwargs):
|
|
|
|
"""RegNetX-32GF"""
|
|
|
|
return _create_regnet('regnetx_320', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_002(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-200MF"""
|
|
|
|
return _create_regnet('regnety_002', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_004(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-400MF"""
|
|
|
|
return _create_regnet('regnety_004', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_006(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-600MF"""
|
|
|
|
return _create_regnet('regnety_006', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_008(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-800MF"""
|
|
|
|
return _create_regnet('regnety_008', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_016(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-1.6GF"""
|
|
|
|
return _create_regnet('regnety_016', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_032(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-3.2GF"""
|
|
|
|
return _create_regnet('regnety_032', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_040(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-4.0GF"""
|
|
|
|
return _create_regnet('regnety_040', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_064(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-6.4GF"""
|
|
|
|
return _create_regnet('regnety_064', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_080(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-8.0GF"""
|
|
|
|
return _create_regnet('regnety_080', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_120(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-12GF"""
|
|
|
|
return _create_regnet('regnety_120', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_160(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-16GF"""
|
|
|
|
return _create_regnet('regnety_160', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_320(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-32GF"""
|
|
|
|
return _create_regnet('regnety_320', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_640(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-64GF"""
|
|
|
|
return _create_regnet('regnety_640', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_1280(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-128GF"""
|
|
|
|
return _create_regnet('regnety_1280', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_2560(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-256GF"""
|
|
|
|
return _create_regnet('regnety_2560', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnety_040s_gn(pretrained=False, **kwargs):
|
|
|
|
"""RegNetY-4.0GF w/ GroupNorm """
|
|
|
|
return _create_regnet('regnety_040s_gn', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetv_040(pretrained=False, **kwargs):
|
|
|
|
""""""
|
|
|
|
return _create_regnet('regnetv_040', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetv_064(pretrained=False, **kwargs):
|
|
|
|
""""""
|
|
|
|
return _create_regnet('regnetv_064', pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetz_005(pretrained=False, **kwargs):
|
|
|
|
"""RegNetZ-500MF
|
|
|
|
NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py
|
|
|
|
but it's not clear it is equivalent to paper model as not detailed in the paper.
|
|
|
|
"""
|
|
|
|
return _create_regnet('regnetz_005', pretrained, zero_init_last=False, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetz_040(pretrained=False, **kwargs):
|
|
|
|
"""RegNetZ-4.0GF
|
|
|
|
NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py
|
|
|
|
but it's not clear it is equivalent to paper model as not detailed in the paper.
|
|
|
|
"""
|
|
|
|
return _create_regnet('regnetz_040', pretrained, zero_init_last=False, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def regnetz_040h(pretrained=False, **kwargs):
|
|
|
|
"""RegNetZ-4.0GF
|
|
|
|
NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py
|
|
|
|
but it's not clear it is equivalent to paper model as not detailed in the paper.
|
|
|
|
"""
|
|
|
|
return _create_regnet('regnetz_040h', pretrained, zero_init_last=False, **kwargs)
|