You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

338 lines
12 KiB

#
# For licensing see accompanying LICENSE.md file.
# Copyright (C) 2022 Apple Inc. All Rights Reserved.
#
import argparse
from collections import OrderedDict
import coremltools as ct
from coremltools.converters.mil import Block, Program, Var
from coremltools.converters.mil.frontend.milproto.load import load as _milproto_to_pymil
from coremltools.converters.mil.mil import Builder as mb
from coremltools.converters.mil.mil import Placeholder
from coremltools.converters.mil.mil import types as types
from coremltools.converters.mil.mil.passes.helper import block_context_manager
from coremltools.converters.mil.mil.passes.pass_registry import PASS_REGISTRY
from coremltools.converters.mil.testing_utils import random_gen_input_feature_type
import gc
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
import numpy as np
import os
from python_coreml_stable_diffusion import torch2coreml
import shutil
import time
def _verify_output_correctness_of_chunks(full_model, first_chunk_model,
second_chunk_model):
""" Verifies the end-to-end output correctness of full (original) model versus chunked models
"""
# Generate inputs for first chunk and full model
input_dict = {}
for input_desc in full_model._spec.description.input:
input_dict[input_desc.name] = random_gen_input_feature_type(input_desc)
# Generate outputs for first chunk and full model
outputs_from_full_model = full_model.predict(input_dict)
outputs_from_first_chunk_model = first_chunk_model.predict(input_dict)
# Prepare inputs for second chunk model from first chunk's outputs and regular inputs
second_chunk_input_dict = {}
for input_desc in second_chunk_model._spec.description.input:
if input_desc.name in outputs_from_first_chunk_model:
second_chunk_input_dict[
input_desc.name] = outputs_from_first_chunk_model[
input_desc.name]
else:
second_chunk_input_dict[input_desc.name] = input_dict[
input_desc.name]
# Generate output for second chunk model
outputs_from_second_chunk_model = second_chunk_model.predict(
second_chunk_input_dict)
# Verify correctness across all outputs from second chunk and full model
for out_name in outputs_from_full_model.keys():
torch2coreml.report_correctness(
original_outputs=outputs_from_full_model[out_name],
final_outputs=outputs_from_second_chunk_model[out_name],
log_prefix=f"{out_name}")
def _load_prog_from_mlmodel(model):
""" Load MIL Program from an MLModel
"""
model_spec = model.get_spec()
start_ = time.time()
logger.info(
"Loading MLModel object into a MIL Program object (including the weights).."
)
prog = _milproto_to_pymil(
model_spec=model_spec,
specification_version=model_spec.specificationVersion,
file_weights_dir=model.weights_dir,
)
logger.info(f"Program loaded in {time.time() - start_:.1f} seconds")
return prog
def _get_op_idx_split_location(prog: Program):
""" Find the op that approximately bisects the graph as measure by weights size on each side
"""
main_block = prog.functions["main"]
total_size_in_mb = 0
for op in main_block.operations:
if op.op_type == "const" and isinstance(op.val.val, np.ndarray):
size_in_mb = op.val.val.size * op.val.val.itemsize / (1024 * 1024)
total_size_in_mb += size_in_mb
half_size = total_size_in_mb / 2
# Find the first non const op (single child), where the total cumulative size exceeds
# the half size for the first time
cumulative_size_in_mb = 0
for op in main_block.operations:
if op.op_type == "const" and isinstance(op.val.val, np.ndarray):
size_in_mb = op.val.val.size * op.val.val.itemsize / (1024 * 1024)
cumulative_size_in_mb += size_in_mb
if (cumulative_size_in_mb > half_size and op.op_type != "const"
and len(op.outputs) == 1
and len(op.outputs[0].child_ops) == 1):
op_idx = main_block.operations.index(op)
return op_idx, cumulative_size_in_mb, total_size_in_mb
def _get_first_chunk_outputs(block, op_idx):
# Get the list of all vars that go across from first program (all ops from 0 to op_idx (inclusive))
# to the second program (all ops from op_idx+1 till the end). These all vars need to be made the output
# of the first program and the input of the second program
boundary_vars = set()
for i in range(op_idx + 1):
op = block.operations[i]
for var in op.outputs:
if var.val is None: # only consider non const vars
for child_op in var.child_ops:
child_op_idx = block.operations.index(child_op)
if child_op_idx > op_idx:
boundary_vars.add(var)
return list(boundary_vars)
@block_context_manager
def _add_fp32_casts(block, boundary_vars):
new_boundary_vars = []
for var in boundary_vars:
if var.dtype != types.fp16:
new_boundary_vars.append(var)
else:
fp32_var = mb.cast(x=var, dtype="fp32", name=var.name)
new_boundary_vars.append(fp32_var)
return new_boundary_vars
def _make_first_chunk_prog(prog, op_idx):
""" Build first chunk by declaring early outputs and removing unused subgraph
"""
block = prog.functions["main"]
boundary_vars = _get_first_chunk_outputs(block, op_idx)
# Due to possible numerical issues, cast any fp16 var to fp32
new_boundary_vars = _add_fp32_casts(block, boundary_vars)
block.outputs.clear()
block.set_outputs(new_boundary_vars)
PASS_REGISTRY["common::dead_code_elimination"](prog)
return prog
def _make_second_chunk_prog(prog, op_idx):
""" Build second chunk by rebuilding a pristine MIL Program from MLModel
"""
block = prog.functions["main"]
block.opset_version = ct.target.iOS16
# First chunk outputs are second chunk inputs (e.g. skip connections)
boundary_vars = _get_first_chunk_outputs(block, op_idx)
# This op will not be included in this program. Its output var will be made into an input
boundary_op = block.operations[op_idx]
# Add all boundary ops as inputs
with block:
for var in boundary_vars:
new_placeholder = Placeholder(
sym_shape=var.shape,
dtype=var.dtype if var.dtype != types.fp16 else types.fp32,
name=var.name,
)
block._input_dict[
new_placeholder.outputs[0].name] = new_placeholder.outputs[0]
block.function_inputs = tuple(block._input_dict.values())
new_var = None
if var.dtype == types.fp16:
new_var = mb.cast(x=new_placeholder.outputs[0],
dtype="fp16",
before_op=var.op)
else:
new_var = new_placeholder.outputs[0]
block.replace_uses_of_var_after_op(
anchor_op=boundary_op,
old_var=var,
new_var=new_var,
)
PASS_REGISTRY["common::dead_code_elimination"](prog)
# Remove any unused inputs
new_input_dict = OrderedDict()
for k, v in block._input_dict.items():
if len(v.child_ops) > 0:
new_input_dict[k] = v
block._input_dict = new_input_dict
block.function_inputs = tuple(block._input_dict.values())
return prog
def main(args):
os.makedirs(args.o, exist_ok=True)
# Check filename extension
mlpackage_name = os.path.basename(args.mlpackage_path)
name, ext = os.path.splitext(mlpackage_name)
assert ext == ".mlpackage", f"`--mlpackage-path` (args.mlpackage_path) is not an .mlpackage file"
# Load CoreML model
logger.info("Loading model from {}".format(args.mlpackage_path))
start_ = time.time()
model = ct.models.MLModel(
args.mlpackage_path,
compute_units=ct.ComputeUnit.CPU_ONLY,
)
logger.info(
f"Loading {args.mlpackage_path} took {time.time() - start_:.1f} seconds"
)
# Load the MIL Program from MLModel
prog = _load_prog_from_mlmodel(model)
# Compute the incision point by bisecting the program based on weights size
op_idx, first_chunk_weights_size, total_weights_size = _get_op_idx_split_location(
prog)
main_block = prog.functions["main"]
incision_op = main_block.operations[op_idx]
logger.info(f"{args.mlpackage_path} will chunked into two pieces.")
logger.info(
f"The incision op: name={incision_op.name}, type={incision_op.op_type}, index={op_idx}/{len(main_block.operations)}"
)
logger.info(f"First chunk size = {first_chunk_weights_size:.2f} MB")
logger.info(
f"Second chunk size = {total_weights_size - first_chunk_weights_size:.2f} MB"
)
# Build first chunk (in-place modifies prog by declaring early exits and removing unused subgraph)
prog_chunk1 = _make_first_chunk_prog(prog, op_idx)
# Build the second chunk
prog_chunk2 = _make_second_chunk_prog(_load_prog_from_mlmodel(model),
op_idx)
if not args.check_output_correctness:
# Original model no longer needed in memory
del model
gc.collect()
# Convert the MIL Program objects into MLModels
logger.info("Converting the two programs")
model_chunk1 = ct.convert(
prog_chunk1,
convert_to="mlprogram",
compute_units=ct.ComputeUnit.CPU_ONLY,
minimum_deployment_target=ct.target.iOS16,
)
del prog_chunk1
gc.collect()
logger.info("Conversion of first chunk done.")
model_chunk2 = ct.convert(
prog_chunk2,
convert_to="mlprogram",
compute_units=ct.ComputeUnit.CPU_ONLY,
minimum_deployment_target=ct.target.iOS16,
)
del prog_chunk2
gc.collect()
logger.info("Conversion of second chunk done.")
# Verify output correctness
if args.check_output_correctness:
logger.info("Verifying output correctness of chunks")
_verify_output_correctness_of_chunks(
full_model=model,
first_chunk_model=model_chunk1,
second_chunk_model=model_chunk2,
)
# Remove original (non-chunked) model if requested
if args.remove_original:
logger.info(
"Removing original (non-chunked) model at {args.mlpackage_path}")
shutil.rmtree(args.mlpackage_path)
logger.info("Done.")
# Save the chunked models to disk
out_path_chunk1 = os.path.join(args.o, name + "_chunk1.mlpackage")
out_path_chunk2 = os.path.join(args.o, name + "_chunk2.mlpackage")
logger.info(
f"Saved chunks in {args.o} with the suffix _chunk1.mlpackage and _chunk2.mlpackage"
)
model_chunk1.save(out_path_chunk1)
model_chunk2.save(out_path_chunk2)
logger.info("Done.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--mlpackage-path",
required=True,
help=
"Path to the mlpackage file to be split into two mlpackages of approximately same file size.",
)
parser.add_argument(
"-o",
required=True,
help=
"Path to output directory where the two model chunks should be saved.",
)
parser.add_argument(
"--remove-original",
action="store_true",
help=
"If specified, removes the original (non-chunked) model to avoid duplicating storage."
)
parser.add_argument(
"--check-output-correctness",
action="store_true",
help=
("If specified, compares the outputs of original Core ML model with that of pipelined CoreML model chunks and reports PSNR in dB. ",
"Enabling this feature uses more memory. Disable it if your machine runs out of memory."
))
args = parser.parse_args()
main(args)