You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

69 lines
2.9 KiB

// For licensing see accompanying LICENSE.md file.
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
import Foundation
import CoreML
public extension StableDiffusionPipeline {
/// Create stable diffusion pipeline using model resources at a
/// specified URL
///
/// - Parameters:
/// - baseURL: URL pointing to directory holding all model
/// and tokenization resources
/// - configuration: The configuration to load model resources with
/// - disableSafety: Load time disable of safety to save memory
/// - Returns:
/// Pipeline ready for image generation if all necessary resources loaded
init(resourcesAt baseURL: URL,
configuration config: MLModelConfiguration = .init(),
disableSafety: Bool = false) throws {
/// Expect URL of each resource
let textEncoderURL = baseURL.appending(path: "TextEncoder.mlmodelc")
let unetURL = baseURL.appending(path: "Unet.mlmodelc")
let unetChunk1URL = baseURL.appending(path: "UnetChunk1.mlmodelc")
let unetChunk2URL = baseURL.appending(path: "UnetChunk2.mlmodelc")
let decoderURL = baseURL.appending(path: "VAEDecoder.mlmodelc")
let safetyCheckerURL = baseURL.appending(path: "SafetyChecker.mlmodelc")
let vocabURL = baseURL.appending(path: "vocab.json")
let mergesURL = baseURL.appending(path: "merges.txt")
// Text tokenizer and encoder
let tokenizer = try BPETokenizer(mergesAt: mergesURL, vocabularyAt: vocabURL)
let textEncoderModel = try MLModel(contentsOf: textEncoderURL, configuration: config)
let textEncoder = TextEncoder(tokenizer: tokenizer, model:textEncoderModel )
// Unet model
let unet: Unet
if FileManager.default.fileExists(atPath: unetChunk1URL.path) &&
FileManager.default.fileExists(atPath: unetChunk2URL.path) {
let chunk1 = try MLModel(contentsOf: unetChunk1URL, configuration: config)
let chunk2 = try MLModel(contentsOf: unetChunk2URL, configuration: config)
unet = Unet(chunks: [chunk1, chunk2])
} else {
let unetModel = try MLModel(contentsOf: unetURL, configuration: config)
unet = Unet(model: unetModel)
}
// Image Decoder
let decoderModel = try MLModel(contentsOf: decoderURL, configuration: config)
let decoder = Decoder(model: decoderModel)
// Optional safety checker
var safetyChecker: SafetyChecker? = nil
if !disableSafety &&
FileManager.default.fileExists(atPath: safetyCheckerURL.path) {
let checkerModel = try MLModel(contentsOf: safetyCheckerURL, configuration: config)
safetyChecker = SafetyChecker(model: checkerModel)
}
// Construct pipelien
self.init(textEncoder: textEncoder,
unet: unet,
decoder: decoder,
safetyChecker: safetyChecker)
}
}