You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.7 KiB
97 lines
3.7 KiB
// For licensing see accompanying LICENSE.md file.
|
|
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
|
|
|
|
import Foundation
|
|
import CoreML
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
public extension StableDiffusionPipeline {
|
|
|
|
struct ResourceURLs {
|
|
|
|
public let textEncoderURL: URL
|
|
public let unetURL: URL
|
|
public let unetChunk1URL: URL
|
|
public let unetChunk2URL: URL
|
|
public let decoderURL: URL
|
|
public let encoderURL: URL
|
|
public let safetyCheckerURL: URL
|
|
public let vocabURL: URL
|
|
public let mergesURL: URL
|
|
|
|
public init(resourcesAt baseURL: URL) {
|
|
textEncoderURL = baseURL.appending(path: "TextEncoder.mlmodelc")
|
|
unetURL = baseURL.appending(path: "Unet.mlmodelc")
|
|
unetChunk1URL = baseURL.appending(path: "UnetChunk1.mlmodelc")
|
|
unetChunk2URL = baseURL.appending(path: "UnetChunk2.mlmodelc")
|
|
decoderURL = baseURL.appending(path: "VAEDecoder.mlmodelc")
|
|
encoderURL = baseURL.appending(path: "VAEEncoder.mlmodelc")
|
|
safetyCheckerURL = baseURL.appending(path: "SafetyChecker.mlmodelc")
|
|
vocabURL = baseURL.appending(path: "vocab.json")
|
|
mergesURL = baseURL.appending(path: "merges.txt")
|
|
}
|
|
}
|
|
|
|
/// Create stable diffusion pipeline using model resources at a
|
|
/// specified URL
|
|
///
|
|
/// - Parameters:
|
|
/// - baseURL: URL pointing to directory holding all model
|
|
/// and tokenization resources
|
|
/// - configuration: The configuration to load model resources with
|
|
/// - disableSafety: Load time disable of safety to save memory
|
|
/// - reduceMemory: Setup pipeline in reduced memory mode
|
|
/// - Returns:
|
|
/// Pipeline ready for image generation if all necessary resources loaded
|
|
init(resourcesAt baseURL: URL,
|
|
configuration config: MLModelConfiguration = .init(),
|
|
disableSafety: Bool = false,
|
|
reduceMemory: Bool = false) throws {
|
|
|
|
/// Expect URL of each resource
|
|
let urls = ResourceURLs(resourcesAt: baseURL)
|
|
|
|
// Text tokenizer and encoder
|
|
let tokenizer = try BPETokenizer(mergesAt: urls.mergesURL, vocabularyAt: urls.vocabURL)
|
|
let textEncoder = TextEncoder(tokenizer: tokenizer,
|
|
modelAt: urls.textEncoderURL,
|
|
configuration: config)
|
|
|
|
// Unet model
|
|
let unet: Unet
|
|
if FileManager.default.fileExists(atPath: urls.unetChunk1URL.path) &&
|
|
FileManager.default.fileExists(atPath: urls.unetChunk2URL.path) {
|
|
unet = Unet(chunksAt: [urls.unetChunk1URL, urls.unetChunk2URL],
|
|
configuration: config)
|
|
} else {
|
|
unet = Unet(modelAt: urls.unetURL, configuration: config)
|
|
}
|
|
|
|
// Image Decoder
|
|
let decoder = Decoder(modelAt: urls.decoderURL, configuration: config)
|
|
|
|
// Optional safety checker
|
|
var safetyChecker: SafetyChecker? = nil
|
|
if !disableSafety &&
|
|
FileManager.default.fileExists(atPath: urls.safetyCheckerURL.path) {
|
|
safetyChecker = SafetyChecker(modelAt: urls.safetyCheckerURL, configuration: config)
|
|
}
|
|
|
|
// Optional Image Encoder
|
|
let encoder: Encoder?
|
|
if FileManager.default.fileExists(atPath: urls.encoderURL.path) {
|
|
encoder = Encoder(modelAt: urls.encoderURL, configuration: config)
|
|
} else {
|
|
encoder = nil
|
|
}
|
|
|
|
// Construct pipeline
|
|
self.init(textEncoder: textEncoder,
|
|
unet: unet,
|
|
decoder: decoder,
|
|
encoder: encoder,
|
|
safetyChecker: safetyChecker,
|
|
reduceMemory: reduceMemory)
|
|
}
|
|
}
|