// For licensing see accompanying LICENSE.md file. // Copyright (C) 2022 Apple Inc. All Rights Reserved. import ArgumentParser import CoreGraphics import CoreML import Foundation import StableDiffusion import UniformTypeIdentifiers struct StableDiffusionSample: ParsableCommand { static let configuration = CommandConfiguration( abstract: "Run stable diffusion to generate images guided by a text prompt", version: "0.1" ) @Argument(help: "Input string prompt") var prompt: String @Option( help: ArgumentHelp( "Path to stable diffusion resources.", discussion: "The resource directory should contain\n" + " - *compiled* models: {TextEncoder,Unet,VAEDecoder}.mlmodelc\n" + " - tokenizer info: vocab.json, merges.txt", valueName: "directory-path" ) ) var resourcePath: String = "./" @Option(help: "Number of images to sample / generate") var imageCount: Int = 1 @Option(help: "Number of diffusion steps to perform") var stepCount: Int = 50 @Option( help: ArgumentHelp( "How often to save samples at intermediate steps", discussion: "Set to 0 to only save the final sample" ) ) var saveEvery: Int = 0 @Option(help: "Output path") var outputPath: String = "./" @Option(help: "Random seed") var seed: Int = 93 @Option(help: "Compute units to load model with {all,cpuOnly,cpuAndGPU,cpuAndNeuralEngine}") var computeUnits: ComputeUnits = .all @Flag(help: "Disable safety checking") var disableSafety: Bool = false mutating func run() throws { guard FileManager.default.fileExists(atPath: resourcePath) else { throw RunError.resources("Resource path does not exist \(resourcePath)") } let config = MLModelConfiguration() config.computeUnits = computeUnits.asMLComputeUnits let resourceURL = URL(filePath: resourcePath) log("Loading resources and creating pipeline\n") log("(Note: This can take a while the first time using these resources)\n") let pipeline = try StableDiffusionPipeline(resourcesAt: resourceURL, configuration: config, disableSafety: disableSafety) log("Sampling ...\n") let sampleTimer = SampleTimer() sampleTimer.start() let images = try pipeline.generateImages( prompt: prompt, imageCount: imageCount, stepCount: stepCount, seed: seed ) { progress in sampleTimer.stop() handleProgress(progress,sampleTimer) if progress.stepCount != progress.step { sampleTimer.start() } return true } _ = try saveImages(images, logNames: true) } func handleProgress( _ progress: StableDiffusionPipeline.Progress, _ sampleTimer: SampleTimer ) { log("\u{1B}[1A\u{1B}[K") log("Step \(progress.step) of \(progress.stepCount) ") log(" [") log(String(format: "mean: %.2f, ", 1.0/sampleTimer.mean)) log(String(format: "median: %.2f, ", 1.0/sampleTimer.median)) log(String(format: "last %.2f", 1.0/sampleTimer.allSamples.last!)) log("] step/sec") if saveEvery > 0, progress.step % saveEvery == 0 { let saveCount = (try? saveImages(progress.currentImages, step: progress.step)) ?? 0 log(" saved \(saveCount) image\(saveCount != 1 ? "s" : "")") } log("\n") } func saveImages( _ images: [CGImage?], step: Int? = nil, logNames: Bool = false ) throws -> Int { let url = URL(filePath: outputPath) var saved = 0 for i in 0 ..< images.count { guard let image = images[i] else { if logNames { log("Image \(i) failed safety check and was not saved") } continue } let name = imageName(i, step: step) let fileURL = url.appending(path:name) guard let dest = CGImageDestinationCreateWithURL(fileURL as CFURL, UTType.png.identifier as CFString, 1, nil) else { throw RunError.saving("Failed to create destination for \(fileURL)") } CGImageDestinationAddImage(dest, image, nil) if !CGImageDestinationFinalize(dest) { throw RunError.saving("Failed to save \(fileURL)") } if logNames { log("Saved \(name)\n") } saved += 1 } return saved } func imageName(_ sample: Int, step: Int? = nil) -> String { var name = prompt.replacingOccurrences(of: " ", with: "_") if imageCount != 1 { name += ".\(sample)" } name += ".\(seed)" if let step = step { name += ".\(step)" } else { name += ".final" } name += ".png" return name } func log(_ str: String, term: String = "") { print(str, terminator: term) } } enum RunError: Error { case resources(String) case saving(String) } enum ComputeUnits: String, ExpressibleByArgument, CaseIterable { case all, cpuAndGPU, cpuOnly, cpuAndNeuralEngine var asMLComputeUnits: MLComputeUnits { switch self { case .all: return .all case .cpuAndGPU: return .cpuAndGPU case .cpuOnly: return .cpuOnly case .cpuAndNeuralEngine: return .cpuAndNeuralEngine } } } StableDiffusionSample.main()