From bf087ca116deec6b94b62b500483b3e81dde5fd8 Mon Sep 17 00:00:00 2001 From: Timothy Kautz Date: Sun, 18 Dec 2022 22:41:27 +0900 Subject: [PATCH] Add Encoder model to torch2coreml for image2image and later for in-paining --- .../torch2coreml.py | 185 +++++++++++++++++- 1 file changed, 183 insertions(+), 2 deletions(-) diff --git a/python_coreml_stable_diffusion/torch2coreml.py b/python_coreml_stable_diffusion/torch2coreml.py index 6d6c2fa..3963f53 100644 --- a/python_coreml_stable_diffusion/torch2coreml.py +++ b/python_coreml_stable_diffusion/torch2coreml.py @@ -43,6 +43,23 @@ def _get_coreml_inputs(sample_inputs, args): ) for k, v in sample_inputs.items() ] +# Simpler version of `DiagonalGaussianDistribution` with only needed calculations +# as implemented in vae.py as part of the AutoencoderKL class +# This is because coreml tools does not support the `randn` operation, so we pass in a random tensor. +class CoreMLDiagonalGaussianDistribution(object): + def __init__(self, parameters, noise): + self.parameters = parameters + self.noise = noise + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.std = torch.exp(0.5 * self.logvar) + + def sample(self) -> torch.FloatTensor: + device = self.parameters.device + # make sure sample is on the same device as the parameters and has same dtype + sample = self.noise.to(device=device, dtype=self.parameters.dtype) + x = self.mean + self.std * sample + return x def compute_psnr(a, b): """ Compute Peak-Signal-to-Noise-Ratio across two numpy.ndarray objects @@ -140,7 +157,7 @@ def _convert_to_coreml(submodule_name, torchscript_module, sample_inputs, def quantize_weights_to_8bits(args): for model_name in [ - "text_encoder", "vae_decoder", "unet", "unet_chunk1", + "text_encoder", "vae_decoder", "vae_encoder", "unet", "unet_chunk1", "unet_chunk2", "safety_checker" ]: out_path = _get_out_path(args, model_name) @@ -190,6 +207,7 @@ def bundle_resources_for_swift_cli(args): # Compile model using coremlcompiler (Significantly reduces the load time for unet) for source_name, target_name in [("text_encoder", "TextEncoder"), ("vae_decoder", "VAEDecoder"), + ("vae_encoder", "VAEEncoder"), ("unet", "Unet"), ("unet_chunk1", "UnetChunk1"), ("unet_chunk2", "UnetChunk2"), @@ -453,6 +471,163 @@ def convert_vae_decoder(pipe, args): gc.collect() +def convert_vae_encoder(pipe, args): + """ Converts the VAE Encoder component of Stable Diffusion + """ + out_path = _get_out_path(args, "vae_encoder") + if os.path.exists(out_path): + logger.info( + f"`vae_encoder` already exists at {out_path}, skipping conversion." + ) + return + + if not hasattr(pipe, "unet"): + raise RuntimeError( + "convert_unet() deletes pipe.unet to save RAM. " + "Please use convert_vae_encoder() before convert_unet()") + + sample_shape = ( + 1, # B + 3, # C (RGB range from -1 to 1) + args.latent_h or pipe.unet.config.sample_size * 8, # H + args.latent_w or pipe.unet.config.sample_size * 8, # w + ) + + noise_shape = ( + 1, # B + 4, # C + pipe.unet.config.sample_size, # H + pipe.unet.config.sample_size, # w + ) + + float_value_shape = ( + 1, + 1, + ) + + sqrtAlphasCumprodTorchShape = torch.tensor([[0.2,]]) + sqrtOneMinusAlphasCumprodTorchShape = torch.tensor([[0.8,]]) + + sample_vae_encoder_inputs = { + "sample": torch.rand(*sample_shape, dtype=torch.float16), + "diagonalNoise": torch.rand(*noise_shape, dtype=torch.float16), + "noise": torch.rand(*noise_shape, dtype=torch.float16), + "sqrtAlphasCumprod": torch.rand(*float_value_shape, dtype=torch.float16), + "sqrtOneMinusAlphasCumprod": torch.rand(*float_value_shape, dtype=torch.float16), + } + + class VAEEncoder(nn.Module): + """ Wrapper nn.Module wrapper for pipe.encode() method + """ + + def __init__(self): + super().__init__() + self.quant_conv = pipe.vae.quant_conv + self.alphas_cumprod = pipe.scheduler.alphas_cumprod + self.encoder = pipe.vae.encoder + + # Because CoreMLTools does not support the torch.randn op, we pass in both + # the diagonal Noise for the `DiagonalGaussianDistribution` operation and + # the noise tensor combined with precalculated `sqrtAlphasCumprod` and `sqrtOneMinusAlphasCumprod` + # for faster computation. + def forward(self, sample, diagonalNoise, noise, sqrtAlphasCumprod, sqrtOneMinusAlphasCumprod): + h = self.encoder(sample) + moments = self.quant_conv(h) + diagonalNoise = diagonalNoise.to(sample.device) + posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise) + posteriorSample = posterior.sample() + + # Add the scaling operation and the latent noise for faster computation + init_latents = 0.18215 * posteriorSample + result = self.add_noise(init_latents, noise, sqrtAlphasCumprod, sqrtOneMinusAlphasCumprod) + return result + + def add_noise( + self, + original_samples: torch.FloatTensor, + noise: torch.FloatTensor, + sqrtAlphasCumprod: torch.FloatTensor, + sqrtOneMinusAlphasCumprod: torch.FloatTensor + ) -> torch.FloatTensor: + noise = noise.to(original_samples.device) + sqrtAlphasCumprod = sqrtAlphasCumprod.to(original_samples.device) + sqrtOneMinusAlphasCumprod = sqrtOneMinusAlphasCumprod.to(original_samples.device) + noisy_samples = sqrtAlphasCumprod * original_samples + sqrtOneMinusAlphasCumprod * noise + return noisy_samples + + + baseline_encoder = VAEEncoder().eval() + + # No optimization needed for the VAE Encoder as it is a pure ConvNet + traced_vae_encoder = torch.jit.trace( + baseline_encoder, ( + sample_vae_encoder_inputs["sample"].to(torch.float32), + sample_vae_encoder_inputs["diagonalNoise"].to(torch.float32), + sample_vae_encoder_inputs["noise"].to(torch.float32), + sqrtAlphasCumprodTorchShape.to(torch.float32), + sqrtOneMinusAlphasCumprodTorchShape.to(torch.float32) + )) + + modify_coremltools_torch_frontend_badbmm() + coreml_vae_encoder, out_path = _convert_to_coreml( + "vae_encoder", traced_vae_encoder, sample_vae_encoder_inputs, + ["latent_dist"], args) + + # Set model metadata + coreml_vae_encoder.author = f"Please refer to the Model Card available at huggingface.co/{args.model_version}" + coreml_vae_encoder.license = "OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)" + coreml_vae_encoder.version = args.model_version + coreml_vae_encoder.short_description = \ + "Stable Diffusion generates images conditioned on text and/or other images as input through the diffusion process. " \ + "Please refer to https://arxiv.org/abs/2112.10752 for details." + + # Set the input descriptions + coreml_vae_encoder.input_description["sample"] = \ + "An image of the correct size to create the latent space with, image2image and in-painting." + coreml_vae_encoder.input_description["diagonalNoise"] = \ + "Latent noise for `DiagonalGaussianDistribution` operation." + coreml_vae_encoder.input_description["noise"] = \ + "Latent noise for use with strength parameter of image2image" + coreml_vae_encoder.input_description["sqrtAlphasCumprod"] = \ + "Precalculated `sqrtAlphasCumprod` value based on strength and the current schedular's alphasCumprod values" + coreml_vae_encoder.input_description["sqrtOneMinusAlphasCumprod"] = \ + "Precalculated `sqrtOneMinusAlphasCumprod` value based on strength and the current schedular's alphasCumprod values" + + # Set the output descriptions + coreml_vae_encoder.output_description[ + "latent_dist"] = "The latent embeddings from the unet model from the input image for image2image." + + _save_mlpackage(coreml_vae_encoder, out_path) + + logger.info(f"Saved vae_encoder into {out_path}") + + # Parity check PyTorch vs CoreML + if args.check_output_correctness: + baseline_out = baseline_encoder( + sample=sample_vae_encoder_inputs["sample"].to(torch.float32), + diagonalNoise=sample_vae_encoder_inputs["diagonalNoise"].to(torch.float32), + noise=sample_vae_encoder_inputs["noise"].to(torch.float32), + sqrtAlphasCumprod=sqrtAlphasCumprodTorchShape, + sqrtOneMinusAlphasCumprod=sqrtOneMinusAlphasCumprodTorchShape, + ).numpy(), + + coreml_out = list( + coreml_vae_encoder.predict( + { + "sample": sample_vae_encoder_inputs["sample"].numpy(), + "diagonalNoise": sample_vae_encoder_inputs["diagonalNoise"].numpy(), + "noise": sample_vae_encoder_inputs["noise"].numpy(), + "sqrtAlphasCumprod": sqrtAlphasCumprodTorchShape.numpy(), + "sqrtOneMinusAlphasCumprod": sqrtOneMinusAlphasCumprodTorchShape.numpy() + }).values()) + + report_correctness(baseline_out[0], coreml_out[0], + "vae_encoder baseline PyTorch to baseline CoreML") + + del traced_vae_encoder, pipe.vae.encoder, coreml_vae_encoder + gc.collect() + + def convert_unet(pipe, args): """ Converts the UNet component of Stable Diffusion """ @@ -801,7 +976,12 @@ def main(args): logger.info("Converting vae_decoder") convert_vae_decoder(pipe, args) logger.info("Converted vae_decoder") - + + if args.convert_vae_encoder: + logger.info("Converting vae_encoder") + convert_vae_encoder(pipe, args) + logger.info("Converted vae_encoder") + if args.convert_unet: logger.info("Converting unet") convert_unet(pipe, args) @@ -835,6 +1015,7 @@ def parser_spec(): # Select which models to export (All are needed for text-to-image pipeline to function) parser.add_argument("--convert-text-encoder", action="store_true") parser.add_argument("--convert-vae-decoder", action="store_true") + parser.add_argument("--convert-vae-encoder", action="store_true") parser.add_argument("--convert-unet", action="store_true") parser.add_argument("--convert-safety-checker", action="store_true") parser.add_argument(