diff --git a/python_coreml_stable_diffusion/torch2coreml.py b/python_coreml_stable_diffusion/torch2coreml.py index e576050..3963f53 100644 --- a/python_coreml_stable_diffusion/torch2coreml.py +++ b/python_coreml_stable_diffusion/torch2coreml.py @@ -10,7 +10,6 @@ from collections import OrderedDict, defaultdict from copy import deepcopy import coremltools as ct from diffusers import StableDiffusionPipeline -from diffusers.models.vae import DiagonalGaussianDistribution import gc import logging @@ -30,22 +29,11 @@ import torch import torch.nn as nn import torch.nn.functional as F -#from coremltools.converters.mil.frontend.torch.torch_op_registry import register_torch_op -#from coremltools.converters.mil.frontend.torch.ops import _get_inputs -#from coremltools.converters.mil import Builder as mb -# -#@register_torch_op -#def randn(context, node): -# inputs = _get_inputs(context, node, expected=5) -# shape = inputs[0] -# -# x = mb.random_normal(shape=shape, mean=0., stddev=1.) -# context.add(x, node.name) - torch.set_grad_enabled(False) from types import MethodType + def _get_coreml_inputs(sample_inputs, args): return [ ct.TensorType( @@ -546,7 +534,6 @@ def convert_vae_encoder(pipe, args): h = self.encoder(sample) moments = self.quant_conv(h) diagonalNoise = diagonalNoise.to(sample.device) -# posterior = DiagonalGaussianDistribution(moments) posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise) posteriorSample = posterior.sample()