|
|
|
// For licensing see accompanying LICENSE.md file.
|
|
|
|
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
|
|
|
|
|
|
|
|
import Foundation
|
|
|
|
import CoreML
|
|
|
|
import Accelerate
|
|
|
|
import CoreGraphics
|
|
|
|
|
|
|
|
/// Schedulers compatible with StableDiffusionPipeline
|
|
|
|
public enum StableDiffusionScheduler {
|
|
|
|
/// Scheduler that uses a pseudo-linear multi-step (PLMS) method
|
|
|
|
case pndmScheduler
|
|
|
|
/// Scheduler that uses a second order DPM-Solver++ algorithm
|
|
|
|
case dpmSolverMultistepScheduler
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A pipeline used to generate image samples from text input using stable diffusion
|
|
|
|
///
|
|
|
|
/// This implementation matches:
|
|
|
|
/// [Hugging Face Diffusers Pipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py)
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
|
public struct StableDiffusionPipeline: ResourceManaging {
|
|
|
|
|
|
|
|
/// Model to generate embeddings for tokenized input text
|
|
|
|
var textEncoder: TextEncoder
|
|
|
|
|
|
|
|
/// Model used to predict noise residuals given an input, diffusion time step, and conditional embedding
|
|
|
|
var unet: Unet
|
|
|
|
|
|
|
|
/// Model used to generate final image from latent diffusion process
|
|
|
|
var decoder: Decoder
|
|
|
|
|
|
|
|
/// Optional model for checking safety of generated image
|
|
|
|
var safetyChecker: SafetyChecker? = nil
|
|
|
|
|
|
|
|
/// Reports whether this pipeline can perform safety checks
|
|
|
|
public var canSafetyCheck: Bool {
|
|
|
|
safetyChecker != nil
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Option to reduce memory during image generation
|
|
|
|
///
|
|
|
|
/// If true, the pipeline will lazily load TextEncoder, Unet, Decoder, and SafetyChecker
|
|
|
|
/// when needed and aggressively unload their resources after
|
|
|
|
///
|
|
|
|
/// This will increase latency in favor of reducing memory
|
|
|
|
var reduceMemory: Bool = false
|
|
|
|
|
|
|
|
/// Creates a pipeline using the specified models and tokenizer
|
|
|
|
///
|
|
|
|
/// - Parameters:
|
|
|
|
/// - textEncoder: Model for encoding tokenized text
|
|
|
|
/// - unet: Model for noise prediction on latent samples
|
|
|
|
/// - decoder: Model for decoding latent sample to image
|
|
|
|
/// - safetyChecker: Optional model for checking safety of generated images
|
|
|
|
/// - reduceMemory: Option to enable reduced memory mode
|
|
|
|
/// - Returns: Pipeline ready for image generation
|
|
|
|
public init(textEncoder: TextEncoder,
|
|
|
|
unet: Unet,
|
|
|
|
decoder: Decoder,
|
|
|
|
safetyChecker: SafetyChecker? = nil,
|
|
|
|
reduceMemory: Bool = false) {
|
|
|
|
self.textEncoder = textEncoder
|
|
|
|
self.unet = unet
|
|
|
|
self.decoder = decoder
|
|
|
|
self.safetyChecker = safetyChecker
|
|
|
|
self.reduceMemory = reduceMemory
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Load required resources for this pipeline
|
|
|
|
///
|
|
|
|
/// If reducedMemory is true this will instead call prewarmResources instead
|
|
|
|
/// and let the pipeline lazily load resources as needed
|
|
|
|
public func loadResources() throws {
|
|
|
|
if reduceMemory {
|
|
|
|
try prewarmResources()
|
|
|
|
} else {
|
|
|
|
try textEncoder.loadResources()
|
|
|
|
try unet.loadResources()
|
|
|
|
try decoder.loadResources()
|
|
|
|
try safetyChecker?.loadResources()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Unload the underlying resources to free up memory
|
|
|
|
public func unloadResources() {
|
|
|
|
textEncoder.unloadResources()
|
|
|
|
unet.unloadResources()
|
|
|
|
decoder.unloadResources()
|
|
|
|
safetyChecker?.unloadResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Prewarm resources one at a time
|
|
|
|
public func prewarmResources() throws {
|
|
|
|
try textEncoder.prewarmResources()
|
|
|
|
try unet.prewarmResources()
|
|
|
|
try decoder.prewarmResources()
|
|
|
|
try safetyChecker?.prewarmResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Text to image generation using stable diffusion
|
|
|
|
///
|
|
|
|
/// - Parameters:
|
|
|
|
/// - prompt: Text prompt to guide sampling
|
|
|
|
/// - negativePrompt: Negative text prompt to guide sampling
|
|
|
|
/// - stepCount: Number of inference steps to perform
|
|
|
|
/// - imageCount: Number of samples/images to generate for the input prompt
|
|
|
|
/// - seed: Random seed which
|
|
|
|
/// - guidanceScale: Controls the influence of the text prompt on sampling process (0=random images)
|
|
|
|
/// - disableSafety: Safety checks are only performed if `self.canSafetyCheck && !disableSafety`
|
|
|
|
/// - progressHandler: Callback to perform after each step, stops on receiving false response
|
|
|
|
/// - Returns: An array of `imageCount` optional images.
|
|
|
|
/// The images will be nil if safety checks were performed and found the result to be un-safe
|
|
|
|
public func generateImages(
|
|
|
|
prompt: String,
|
|
|
|
negativePrompt: String = "",
|
|
|
|
imageCount: Int = 1,
|
|
|
|
stepCount: Int = 50,
|
|
|
|
seed: UInt32 = 0,
|
|
|
|
guidanceScale: Float = 7.5,
|
|
|
|
disableSafety: Bool = false,
|
|
|
|
scheduler: StableDiffusionScheduler = .pndmScheduler,
|
|
|
|
progressHandler: (Progress) -> Bool = { _ in true }
|
|
|
|
) throws -> [CGImage?] {
|
|
|
|
|
|
|
|
// Encode the input prompt and negative prompt
|
|
|
|
let promptEmbedding = try textEncoder.encode(prompt)
|
|
|
|
let negativePromptEmbedding = try textEncoder.encode(negativePrompt)
|
|
|
|
|
|
|
|
if reduceMemory {
|
|
|
|
textEncoder.unloadResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert to Unet hidden state representation
|
|
|
|
// Concatenate the prompt and negative prompt embeddings
|
|
|
|
let concatEmbedding = MLShapedArray<Float32>(
|
|
|
|
concatenating: [negativePromptEmbedding, promptEmbedding],
|
|
|
|
alongAxis: 0
|
|
|
|
)
|
|
|
|
|
|
|
|
let hiddenStates = toHiddenStates(concatEmbedding)
|
|
|
|
|
|
|
|
/// Setup schedulers
|
|
|
|
let scheduler: [Scheduler] = (0..<imageCount).map { _ in
|
|
|
|
switch scheduler {
|
|
|
|
case .pndmScheduler: return PNDMScheduler(stepCount: stepCount)
|
|
|
|
case .dpmSolverMultistepScheduler: return DPMSolverMultistepScheduler(stepCount: stepCount)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let stdev = scheduler[0].initNoiseSigma
|
|
|
|
|
|
|
|
// Generate random latent samples from specified seed
|
|
|
|
var latents = generateLatentSamples(imageCount, stdev: stdev, seed: seed)
|
|
|
|
|
|
|
|
// De-noising loop
|
|
|
|
for (step,t) in scheduler[0].timeSteps.enumerated() {
|
|
|
|
|
|
|
|
// Expand the latents for classifier-free guidance
|
|
|
|
// and input to the Unet noise prediction model
|
|
|
|
let latentUnetInput = latents.map {
|
|
|
|
MLShapedArray<Float32>(concatenating: [$0, $0], alongAxis: 0)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Predict noise residuals from latent samples
|
|
|
|
// and current time step conditioned on hidden states
|
|
|
|
var noise = try unet.predictNoise(
|
|
|
|
latents: latentUnetInput,
|
|
|
|
timeStep: t,
|
|
|
|
hiddenStates: hiddenStates
|
|
|
|
)
|
|
|
|
|
|
|
|
noise = performGuidance(noise, guidanceScale)
|
|
|
|
|
|
|
|
// Have the scheduler compute the previous (t-1) latent
|
|
|
|
// sample given the predicted noise and current sample
|
|
|
|
for i in 0..<imageCount {
|
|
|
|
latents[i] = scheduler[i].step(
|
|
|
|
output: noise[i],
|
|
|
|
timeStep: t,
|
|
|
|
sample: latents[i]
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Report progress
|
|
|
|
let progress = Progress(
|
|
|
|
pipeline: self,
|
|
|
|
prompt: prompt,
|
|
|
|
step: step,
|
|
|
|
stepCount: stepCount,
|
|
|
|
currentLatentSamples: latents,
|
|
|
|
isSafetyEnabled: canSafetyCheck && !disableSafety
|
|
|
|
)
|
|
|
|
if !progressHandler(progress) {
|
|
|
|
// Stop if requested by handler
|
|
|
|
return []
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if reduceMemory {
|
|
|
|
unet.unloadResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decode the latent samples to images
|
|
|
|
return try decodeToImages(latents, disableSafety: disableSafety)
|
|
|
|
}
|
|
|
|
|
|
|
|
func generateLatentSamples(_ count: Int, stdev: Float, seed: UInt32) -> [MLShapedArray<Float32>] {
|
|
|
|
var sampleShape = unet.latentSampleShape
|
|
|
|
sampleShape[0] = 1
|
|
|
|
|
|
|
|
var random = NumPyRandomSource(seed: seed)
|
|
|
|
let samples = (0..<count).map { _ in
|
|
|
|
MLShapedArray<Float32>(
|
|
|
|
converting: random.normalShapedArray(sampleShape, mean: 0.0, stdev: Double(stdev)))
|
|
|
|
}
|
|
|
|
return samples
|
|
|
|
}
|
|
|
|
|
|
|
|
func toHiddenStates(_ embedding: MLShapedArray<Float32>) -> MLShapedArray<Float32> {
|
|
|
|
// Unoptimized manual transpose [0, 2, None, 1]
|
|
|
|
// e.g. From [2, 77, 768] to [2, 768, 1, 77]
|
|
|
|
let fromShape = embedding.shape
|
|
|
|
let stateShape = [fromShape[0],fromShape[2], 1, fromShape[1]]
|
|
|
|
var states = MLShapedArray<Float32>(repeating: 0.0, shape: stateShape)
|
|
|
|
for i0 in 0..<fromShape[0] {
|
|
|
|
for i1 in 0..<fromShape[1] {
|
|
|
|
for i2 in 0..<fromShape[2] {
|
|
|
|
states[scalarAt:i0,i2,0,i1] = embedding[scalarAt:i0, i1, i2]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return states
|
|
|
|
}
|
|
|
|
|
|
|
|
func performGuidance(_ noise: [MLShapedArray<Float32>], _ guidanceScale: Float) -> [MLShapedArray<Float32>] {
|
|
|
|
noise.map { performGuidance($0, guidanceScale) }
|
|
|
|
}
|
|
|
|
|
|
|
|
func performGuidance(_ noise: MLShapedArray<Float32>, _ guidanceScale: Float) -> MLShapedArray<Float32> {
|
|
|
|
|
|
|
|
let blankNoiseScalars = noise[0].scalars
|
|
|
|
let textNoiseScalars = noise[1].scalars
|
|
|
|
|
|
|
|
var resultScalars = blankNoiseScalars
|
|
|
|
|
|
|
|
for i in 0..<resultScalars.count {
|
|
|
|
// unconditioned + guidance*(text - unconditioned)
|
|
|
|
resultScalars[i] += guidanceScale*(textNoiseScalars[i]-blankNoiseScalars[i])
|
|
|
|
}
|
|
|
|
|
|
|
|
var shape = noise.shape
|
|
|
|
shape[0] = 1
|
|
|
|
return MLShapedArray<Float32>(scalars: resultScalars, shape: shape)
|
|
|
|
}
|
|
|
|
|
|
|
|
func decodeToImages(_ latents: [MLShapedArray<Float32>],
|
|
|
|
disableSafety: Bool) throws -> [CGImage?] {
|
|
|
|
|
|
|
|
let images = try decoder.decode(latents)
|
|
|
|
if reduceMemory {
|
|
|
|
decoder.unloadResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
// If safety is disabled return what was decoded
|
|
|
|
if disableSafety {
|
|
|
|
return images
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there is no safety checker return what was decoded
|
|
|
|
guard let safetyChecker = safetyChecker else {
|
|
|
|
return images
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise change images which are not safe to nil
|
|
|
|
let safeImages = try images.map { image in
|
|
|
|
try safetyChecker.isSafe(image) ? image : nil
|
|
|
|
}
|
|
|
|
|
|
|
|
if reduceMemory {
|
|
|
|
safetyChecker.unloadResources()
|
|
|
|
}
|
|
|
|
|
|
|
|
return safeImages
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
|
extension StableDiffusionPipeline {
|
|
|
|
/// Sampling progress details
|
|
|
|
public struct Progress {
|
|
|
|
public let pipeline: StableDiffusionPipeline
|
|
|
|
public let prompt: String
|
|
|
|
public let step: Int
|
|
|
|
public let stepCount: Int
|
|
|
|
public let currentLatentSamples: [MLShapedArray<Float32>]
|
|
|
|
public let isSafetyEnabled: Bool
|
|
|
|
public var currentImages: [CGImage?] {
|
|
|
|
try! pipeline.decodeToImages(
|
|
|
|
currentLatentSamples,
|
|
|
|
disableSafety: !isSafetyEnabled)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|