You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

97 lines
3.7 KiB

// For licensing see accompanying LICENSE.md file.
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
import Foundation
import CoreML
@available(iOS 16.2, macOS 13.1, *)
public extension StableDiffusionPipeline {
struct ResourceURLs {
public let textEncoderURL: URL
public let unetURL: URL
public let unetChunk1URL: URL
public let unetChunk2URL: URL
public let decoderURL: URL
public let encoderURL: URL
public let safetyCheckerURL: URL
public let vocabURL: URL
public let mergesURL: URL
public init(resourcesAt baseURL: URL) {
textEncoderURL = baseURL.appending(path: "TextEncoder.mlmodelc")
unetURL = baseURL.appending(path: "Unet.mlmodelc")
unetChunk1URL = baseURL.appending(path: "UnetChunk1.mlmodelc")
unetChunk2URL = baseURL.appending(path: "UnetChunk2.mlmodelc")
decoderURL = baseURL.appending(path: "VAEDecoder.mlmodelc")
encoderURL = baseURL.appending(path: "VAEEncoder.mlmodelc")
safetyCheckerURL = baseURL.appending(path: "SafetyChecker.mlmodelc")
vocabURL = baseURL.appending(path: "vocab.json")
mergesURL = baseURL.appending(path: "merges.txt")
}
}
/// Create stable diffusion pipeline using model resources at a
/// specified URL
///
/// - Parameters:
/// - baseURL: URL pointing to directory holding all model
/// and tokenization resources
/// - configuration: The configuration to load model resources with
/// - disableSafety: Load time disable of safety to save memory
/// - reduceMemory: Setup pipeline in reduced memory mode
/// - Returns:
/// Pipeline ready for image generation if all necessary resources loaded
init(resourcesAt baseURL: URL,
configuration config: MLModelConfiguration = .init(),
disableSafety: Bool = false,
reduceMemory: Bool = false) throws {
/// Expect URL of each resource
let urls = ResourceURLs(resourcesAt: baseURL)
// Text tokenizer and encoder
let tokenizer = try BPETokenizer(mergesAt: urls.mergesURL, vocabularyAt: urls.vocabURL)
let textEncoder = TextEncoder(tokenizer: tokenizer,
modelAt: urls.textEncoderURL,
configuration: config)
// Unet model
let unet: Unet
if FileManager.default.fileExists(atPath: urls.unetChunk1URL.path) &&
FileManager.default.fileExists(atPath: urls.unetChunk2URL.path) {
unet = Unet(chunksAt: [urls.unetChunk1URL, urls.unetChunk2URL],
configuration: config)
} else {
unet = Unet(modelAt: urls.unetURL, configuration: config)
}
// Image Decoder
let decoder = Decoder(modelAt: urls.decoderURL, configuration: config)
// Optional safety checker
var safetyChecker: SafetyChecker? = nil
if !disableSafety &&
FileManager.default.fileExists(atPath: urls.safetyCheckerURL.path) {
safetyChecker = SafetyChecker(modelAt: urls.safetyCheckerURL, configuration: config)
}
// Optional Image Encoder
let encoder: Encoder?
if FileManager.default.fileExists(atPath: urls.encoderURL.path) {
encoder = Encoder(modelAt: urls.encoderURL, configuration: config)
} else {
encoder = nil
}
// Construct pipeline
self.init(textEncoder: textEncoder,
unet: unet,
decoder: decoder,
encoder: encoder,
safetyChecker: safetyChecker,
reduceMemory: reduceMemory)
}
}