# Convert a LLaMA model checkpoint to a ggml compatible file # # Load the model using Torch # Iterate over all variables and write them to a binary file. # # For each variable, write the following: # - Number of dimensions (int) # - Name length (int) # - Dimensions (int[n_dims]) # - Name (char[name_length]) # - Data (float[n_dims]) # # By default, the bigger matrices are converted to 16-bit floats. # This can be disabled by adding the "use-f32" CLI argument. # # At the start of the ggml file we write the model parameters # and vocabulary. # import sys import json import struct import numpy as np import torch import argparse from sentencepiece import SentencePieceProcessor ARG_PARSER = argparse.ArgumentParser() ARG_PARSER.add_argument("--model", type=str, required=True, help="Model to convert") ARG_PARSER.add_argument("--ftype", type=str, required=True, choices=["f16", "f32"], help="Either f16 or f32") ARG_PARSER.add_argument("--output", type=str, required=True, help="Model to write") ARGS = ARG_PARSER.parse_args() FTYPE_IDX = -1 if ARGS.ftype == "f16": FTYPE_IDX = 1 elif ARGS.ftype == "f32": FTYPE_IDX = 0 fname_hparams = ARGS.model + "/params.json" fname_tokenizer = ARGS.model + "/../tokenizer.model" def get_n_parts(dim): if dim == 4096: return 1 elif dim == 5120: return 2 elif dim == 6656: return 4 elif dim == 8192: return 8 else: print("Invalid dim: " + str(dim)) sys.exit(1) fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin" with open(fname_hparams, "r") as f: hparams = json.load(f) tokenizer = SentencePieceProcessor(fname_tokenizer) hparams.update({"vocab_size": tokenizer.vocab_size()}) n_parts = get_n_parts(hparams["dim"]) print(hparams) print('n_parts = ', n_parts) for p in range(n_parts): print('Processing part ', p) fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin" if (p > 0): fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin" + "." + str(p) model = torch.load( ARGS.model + "/consolidated.0" + str(p) + ".pth", map_location="cpu" ) fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["dim"])) fout.write(struct.pack("i", hparams["multiple_of"])) fout.write(struct.pack("i", hparams["n_heads"])) fout.write(struct.pack("i", hparams["n_layers"])) fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete) fout.write(struct.pack("i", FTYPE_IDX)) # Is this correct?? for i in range(32000): # TODO: this is probably wrong - not sure how this tokenizer works text = tokenizer.decode([29889, i]).encode('utf-8') # remove the first byte (it's always '.') text = text[1:] fout.write(struct.pack("i", len(text))) fout.write(text) for k, v in model.items(): name = k shape = v.shape # skip layers.X.attention.inner_attention.rope.freqs if name[-5:] == "freqs": continue print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype) #data = tf.train.load_variable(ARGS.output, name).squeeze() data = v.numpy().squeeze() n_dims = len(data.shape); # for efficiency - transpose some matrices # "model/h.*/attn/c_attn/w" # "model/h.*/attn/c_proj/w" # "model/h.*/mlp/c_fc/w" # "model/h.*/mlp/c_proj/w" #if name[-14:] == "/attn/c_attn/w" or \ # name[-14:] == "/attn/c_proj/w" or \ # name[-11:] == "/mlp/c_fc/w" or \ # name[-13:] == "/mlp/c_proj/w": # print(" Transposing") # data = data.transpose() dshape = data.shape if ARGS.ftype == "f32" or n_dims == 1: print(" Converting to float32") data = data.astype(np.float32) # header sname = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(sname), FTYPE_IDX)) for i in range(n_dims): fout.write(struct.pack("i", dshape[n_dims - 1 - i])) fout.write(sname); # data data.tofile(fout) # I hope this deallocates the memory .. model = None fout.close() print("Done. Output file: " + fname_out + ", (part ", p, ")") print("")