// SOURCE: https://github.com/google/sentencepiece/blob/9ffb33a14c97c512103be0ee74740099660b39aa/src/sentencepiece_model.proto#L282 // Copyright 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License.! syntax = "proto2"; // TODO(taku): Needs to use LITE RUNTIME in OSS release. option optimize_for = LITE_RUNTIME; package sentencepiece; // TrainerSpec encodes a various parameters for SentencePiece training. // Next id: 53 message TrainerSpec { /////////////////////////////////////////////////////////////////// // General parameters // // Input corpus files. // Trainer accepts the following two formats: // A) Monolingual: plain text, one sentence per line. // B) Bilingual: TSV, source sentence target sentence // When bilingual data is passed, shared vocabulary model is built. // Note that the input file must be raw corpus, not a preprocessed corpus. // Trainer only loads the first `input_sentence_size` sentences specified // with this parameter. repeated string input = 1; // Input corpus format: // "text": one-sentence-per-line text format (default) // "tsv": sentence freq optional string input_format = 7; // Output model file prefix. // .model and .vocab are generated. optional string model_prefix = 2; // Model type. only have UNIGRAM now. enum ModelType { UNIGRAM = 1; // Unigram language model with dynamic algorithm BPE = 2; // Byte Pair Encoding WORD = 3; // Delimitered by whitespace. CHAR = 4; // tokenizes into character sequence } optional ModelType model_type = 3 [default = UNIGRAM]; // Vocabulary size. 8k is the default size. optional int32 vocab_size = 4 [default = 8000]; // List of the languages this model can accept. // Since the model is language-agnostic, this field is used as a reference. repeated string accept_language = 5; // Size of self-test samples, which are encoded in the model file. optional int32 self_test_sample_size = 6 [default = 0]; // Whether to use DP version of sentencepiece. Use it with TSV input format // (requires precomputed word tab counts to work). optional bool enable_differential_privacy = 50 [default = false]; // Set these parameters if you need DP version of sentencepiece. // std of noise to add. optional float differential_privacy_noise_level = 51 [default = 0.0]; // Clipping threshold to apply after adding noise. All the words with // frequency less than this value are dropped. optional uint64 differential_privacy_clipping_threshold = 52 [default = 0]; /////////////////////////////////////////////////////////////////// // Training parameters. // // Uses characters which cover the corpus with the ratio of `chars_coverage`. // This parameter determines the set of basic Alphabet of sentence piece. // 1.0 - `chars_coverage` characters are treated as UNK. // See also required_chars field. optional float character_coverage = 10 [default = 0.9995]; // Maximum size of sentences the trainer loads from `input` parameter. // Trainer simply loads the `input` files in sequence. // It is better to shuffle the input corpus randomly. optional uint64 input_sentence_size = 11 [default = 0]; optional bool shuffle_input_sentence = 19 [default = true]; // Maximum size of sentences to make seed sentence pieces. // Extended suffix array is constructed to extract frequent // sub-strings from the corpus. This uses 20N working space, // where N is the size of corpus. optional int32 mining_sentence_size = 12 [deprecated = true]; // Maximum size of sentences to train sentence pieces. optional int32 training_sentence_size = 13 [deprecated = true]; // The size of seed sentencepieces. // `seed_sentencepiece_size` must be larger than `vocab_size`. optional int32 seed_sentencepiece_size = 14 [default = 1000000]; // In every EM sub-iterations, keeps top // `shrinking_factor` * `current sentencepieces size` with respect to // the loss of the sentence piece. This value should be smaller than 1.0. optional float shrinking_factor = 15 [default = 0.75]; // The maximum sentence length in byte. The sentences with the length // larger than `max_sentence_length` is simply ignored. // Longer input tends to bring the following risks: // * Overflow during EM training (unigram language model only) // * Performance drop because of O(n log n) cost in BPE. optional int32 max_sentence_length = 18 [default = 4192]; // Number of threads in the training. optional int32 num_threads = 16 [default = 16]; // Number of EM sub iterations. optional int32 num_sub_iterations = 17 [default = 2]; /////////////////////////////////////////////////////////////////// // SentencePiece parameters which control the shapes of sentence piece. // // Maximum length of sentencepiece. optional int32 max_sentencepiece_length = 20 [default = 16]; // Uses Unicode script to split sentence pieces. // When `split_by_unicode_script` is true, we do not allow sentence piece to // include multiple Unicode scripts, e.g. "F1" is not a valid piece. // Exception: CJ characters (Hiragana/Katakana/Han) are all handled // as one script type, since Japanese word can consist of multiple scripts. // This exception is always applied regardless of the accept-language // parameter. optional bool split_by_unicode_script = 21 [default = true]; // When `split_by_number` is true, put a boundary between number and // non-number transition. If we want to treat "F1" is one token, set this flag // to be false. optional bool split_by_number = 23 [default = true]; // Use a white space to split sentence pieces. // When `split_by_whitespace` is false, we may have the piece containing // a white space in the middle. e.g., "in_the". optional bool split_by_whitespace = 22 [default = true]; // Adds whitespace symbol (_) as a suffix instead of prefix. e.g., _hello => // hello_. When `treat_whitespace_as_suffix` is true, // NormalizerSpec::add_dummy_prefix will add the dummy whitespace to the end // of sentence. optional bool treat_whitespace_as_suffix = 24 [default = false]; // Allows pieces that only contain whitespaces instead of appearing only as // prefix or suffix of other pieces. optional bool allow_whitespace_only_pieces = 26 [default = false]; // Split all digits (0-9) into separate pieces. optional bool split_digits = 25 [default = false]; /////////////////////////////////////////////////////////////////// // Vocabulary management // // Defines control symbols used as an indicator to // change the behavior of the decoder. and are pre-defined. // We can use this field to encode various meta information, // including language indicator in multilingual model. // These symbols are not visible to users, but visible to // the decoder. Note that when the input sentence contains control symbols, // they are not treated as one token, but segmented into normal pieces. // Control symbols must be inserted independently from the segmentation. repeated string control_symbols = 30; // Defines user defined symbols. // These symbols are added with extremely high score // so they are always treated as one unique symbol in any context. // Typical usage of user_defined_symbols is placeholder for named entities. repeated string user_defined_symbols = 31; // Defines required characters. Each UTF8 character in this string is included // in the character set regardless of character_coverage value. Unlike // user_defined_symbols, these characters have scores based on the frequency // on input sentences, and the model can form subwords using characters // in this field. optional string required_chars = 36; // Decomposes unknown pieces into UTF-8 bytes. optional bool byte_fallback = 35 [default = false]; // When creating the vocabulary file, defines whether or not to additionally // output the score for each piece. optional bool vocabulary_output_piece_score = 32 [default = true]; // `vocab_size` is treated as hard limit. Crash if // the model can not produce the vocab of size `vocab_size`, // When `hard_vocab_limit` is false, vocab_size is treated // as soft limit. Note that when model_type=char, // always assumes hard_vocab_limit = false. optional bool hard_vocab_limit = 33 [default = true]; // use all symbols for vocab extraction. This flag is valid // if model type is either CHAR or WORD optional bool use_all_vocab = 34 [default = false]; /////////////////////////////////////////////////////////////////// // Reserved special meta tokens. // * -1 is not used. // * unk_id must not be -1. // Id must starts with 0 and be contigous. optional int32 unk_id = 40 [default = 0]; // optional int32 bos_id = 41 [default = 1]; // optional int32 eos_id = 42 [default = 2]; // optional int32 pad_id = 43 [default = -1]; // (padding) optional string unk_piece = 45 [default = ""]; optional string bos_piece = 46 [default = ""]; optional string eos_piece = 47 [default = ""]; optional string pad_piece = 48 [default = ""]; // Encodes into U+2047 (DOUBLE QUESTION MARK), // since this character can be useful both for user and // developer. We can easily figure out that is emitted. optional string unk_surface = 44 [default = " \xE2\x81\x87 "]; // Increase bit depth to allow unigram model training on large // (>10M sentences) corpora. A Side-effect of enabling this flag // is increased memory usage. optional bool train_extremely_large_corpus = 49 [default = false]; // Customized extensions: the range of field numbers // are open to third-party extensions. extensions 200 to max; } // NormalizerSpec encodes a various parameters for string normalizaiton message NormalizerSpec { // name of normalization rule. optional string name = 1; // Pre-compiled normalization rule created by // Builder::GetPrecompiledCharsMap() or Builder::CompileCharsMap() method. // Usually this field is set by Builder::GetNormalizerSpec() method. optional bytes precompiled_charsmap = 2; // Adds dummy whitespace at the beginning of text in order to // treat "world" in "world" and "hello world" in the same way. optional bool add_dummy_prefix = 3 [default = true]; // Removes leading, trailing, and duplicate internal whitespace. optional bool remove_extra_whitespaces = 4 [default = true]; // Replaces whitespace with meta symbol. // This field must be true to train sentence piece model. optional bool escape_whitespaces = 5 [default = true]; // Custom normalization rule file in TSV format. // https://github.com/google/sentencepiece/blob/master/doc/normalization.md // This field is only used in SentencePieceTrainer::Train() method, which // compiles the rule into the binary rule stored in `precompiled_charsmap`. optional string normalization_rule_tsv = 6; // Customized extensions: the range of field numbers // are open to third-party extensions. extensions 200 to max; } // Proto to store samples for self-testing. message SelfTestData { message Sample { optional string input = 1; optional string expected = 2; } repeated Sample samples = 1; // Customized extensions: the range of field numbers // are open to third-party extensions. extensions 200 to max; } // ModelProto stores model parameters. // SentencePieceProcessor is supposed to be self-contained. // All settings/parameters which may change the behavior must be encoded // in ModelProto. message ModelProto { message SentencePiece { enum Type { NORMAL = 1; // normal symbol UNKNOWN = 2; // unknown symbol. only for now. CONTROL = 3; // control symbols. , , <2ja> etc. USER_DEFINED = 4; // user defined symbols. // Typical usage of USER_DEFINED symbol // is placeholder. BYTE = 6; // byte symbols. Used when `byte_fallback` is true. UNUSED = 5; // this piece is not used. } optional string piece = 1; // piece must not be empty. optional float score = 2; optional Type type = 3 [default = NORMAL]; // Customized extensions: the range of field numbers // are open to third-party extensions. extensions 200 to max; } // Sentence pieces with scores. repeated SentencePiece pieces = 1; // Spec used to generate this model file. optional TrainerSpec trainer_spec = 2; // Spec for text normalization. optional NormalizerSpec normalizer_spec = 3; // Stores sample input and its expected segmentation to verify the model. optional SelfTestData self_test_data = 4; // Spec for text de-normalization. optional NormalizerSpec denormalizer_spec = 5; // Customized extensions: the range of field numbers // are open to third-party extensions. extensions 200 to max; }