// Various helper functions and utilities #pragma once #include #include #include #include #include #include #include // // CLI argument parsing // struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_predict = 128; // new tokens to predict int32_t repeat_last_n = 64; // last n tokens to penalize // sampling parameters int32_t top_k = 40; float top_p = 0.95f; float temp = 0.80f; float repeat_penalty = 1.30f; int32_t n_batch = 8; // batch size for prompt processing std::string model = "models/lamma-7B/ggml-model.bin"; // model path std::string prompt; bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode bool interactive_start = false; // reverse prompt immediately std::string antiprompt = ""; // string upon seeing which more user input is prompted }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); // // Vocab utils // struct gpt_vocab { using id = int32_t; using token = std::string; std::map token_to_id; std::map id_to_token; }; void replace(std::string & str, const std::string & needle, const std::string & replacement); // poor-man's JSON parsing std::map json_parse(const std::string & fname); // split text into tokens // // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 // // Regex (Python): // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" // // Regex (C++): // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" // std::vector gpt_tokenize(const gpt_vocab & vocab, const std::string & text); // TODO: this is probably wrong, but I cannot figure out how this tokenizer works .. // ref: https://github.com/google/sentencepiece std::vector llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos); // load the tokens from encoder.json bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); // sample next token given probabilities for each embedding // // - consider only the top K tokens // - from them, consider only the top tokens with cumulative probability > P // gpt_vocab::id llama_sample_top_p_top_k( const gpt_vocab & vocab, const float * logits, std::vector & last_n_tokens, double repeat_penalty, int top_k, double top_p, double temp, std::mt19937 & rng); // filer to top K tokens from list of logits void sample_top_k(std::vector> & logits_id, int top_k); // // Quantization // size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist); size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist); void untokenize(sentencepiece::SentencePieceProcessor & sp, std::vector & buffids, std::vector & embd);