Fix a bug in the rope calculation

pull/3/head
Georgi Gerganov 2 years ago
parent 18ebda34d6
commit 70bc0b8b15
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

@ -73,7 +73,7 @@ fout.write(struct.pack("i", hparams["dim"]))
fout.write(struct.pack("i", hparams["multiple_of"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", 64)) # rot
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
fout.write(struct.pack("i", ftype))
# Is this correct??

@ -400,7 +400,7 @@ bool llama_eval(
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
const int n_rot = hparams.n_embd/hparams.n_head;
const int d_key = n_embd/n_head;
@ -628,6 +628,9 @@ int main(int argc, char ** argv) {
params.prompt = gpt_random_prompt(rng);
}
// params.prompt = R"(// this function checks if the number n is prime
//bool is_prime(int n) {)";
int64_t t_load_us = 0;
gpt_vocab vocab;
@ -691,7 +694,6 @@ int main(int argc, char ** argv) {
if (i >= embd_inp.size()) {
// sample next token
const int top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
@ -702,7 +704,7 @@ int main(int argc, char ** argv) {
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
id = llama_sample_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_p, temp, rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}

@ -257,7 +257,7 @@ std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::st
}
}
if (l == 0 && t != 13) {
if (l == 0) {
break;
}
@ -367,6 +367,83 @@ gpt_vocab::id gpt_sample_top_k_top_p(
return logits_id[idx].second;
}
gpt_vocab::id llama_sample_top_p(
const gpt_vocab & vocab,
const float * logits,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
std::sort(
logits_id.begin(),
logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < (int) probs.size(); i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
probs.resize(i + 1);
logits_id.resize(i + 1);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//printf("\n\n");
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
const int nb = k / qk;
const size_t row_size = nb*(sizeof(float) + sizeof(uint8_t)*qk/2);

@ -18,7 +18,7 @@ struct gpt_params {
int32_t n_predict = 128; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
int32_t top_k = 40; // unused
float top_p = 0.95f;
float temp = 0.80f;
@ -86,6 +86,13 @@ gpt_vocab::id gpt_sample_top_k_top_p(
double temp,
std::mt19937 & rng);
gpt_vocab::id llama_sample_top_p(
const gpt_vocab & vocab,
const float * logits,
double top_p,
double temp,
std::mt19937 & rng);
//
// Quantization
//

Loading…
Cancel
Save