|
|
|
@ -257,7 +257,7 @@ std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::st
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (l == 0 && t != 13) {
|
|
|
|
|
if (l == 0) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -367,6 +367,83 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
|
|
|
|
return logits_id[idx].second;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
gpt_vocab::id llama_sample_top_p(
|
|
|
|
|
const gpt_vocab & vocab,
|
|
|
|
|
const float * logits,
|
|
|
|
|
double top_p,
|
|
|
|
|
double temp,
|
|
|
|
|
std::mt19937 & rng) {
|
|
|
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
|
|
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
|
|
|
logits_id.reserve(n_logits);
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
const double scale = 1.0/temp;
|
|
|
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
|
|
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::sort(
|
|
|
|
|
logits_id.begin(),
|
|
|
|
|
logits_id.end(),
|
|
|
|
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
|
|
|
return a.first > b.first;
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
double maxl = -INFINITY;
|
|
|
|
|
for (const auto & kv : logits_id) {
|
|
|
|
|
maxl = std::max(maxl, kv.first);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// compute probs for the top K tokens
|
|
|
|
|
std::vector<double> probs;
|
|
|
|
|
probs.reserve(logits_id.size());
|
|
|
|
|
|
|
|
|
|
double sum = 0.0;
|
|
|
|
|
for (const auto & kv : logits_id) {
|
|
|
|
|
double p = exp(kv.first - maxl);
|
|
|
|
|
probs.push_back(p);
|
|
|
|
|
sum += p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// normalize the probs
|
|
|
|
|
for (auto & p : probs) {
|
|
|
|
|
p /= sum;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (top_p < 1.0f) {
|
|
|
|
|
double cumsum = 0.0f;
|
|
|
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
|
|
|
cumsum += probs[i];
|
|
|
|
|
if (cumsum >= top_p) {
|
|
|
|
|
probs.resize(i + 1);
|
|
|
|
|
logits_id.resize(i + 1);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cumsum = 1.0/cumsum;
|
|
|
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
|
|
|
probs[i] *= cumsum;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//printf("\n");
|
|
|
|
|
//for (int i = 0; i < (int) 10; i++) {
|
|
|
|
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
|
|
|
//}
|
|
|
|
|
//printf("\n\n");
|
|
|
|
|
//exit(0);
|
|
|
|
|
|
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
|
|
|
int idx = dist(rng);
|
|
|
|
|
|
|
|
|
|
return logits_id[idx].second;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
|
|
|
|
|
const int nb = k / qk;
|
|
|
|
|
const size_t row_size = nb*(sizeof(float) + sizeof(uint8_t)*qk/2);
|
|
|
|
|