You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ggml/examples/whisper/whisper.cpp

2535 lines
86 KiB

#include "whisper.h"
#include "ggml.h"
#include <algorithm>
#include <cassert>
#define _USE_MATH_DEFINES
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <thread>
#include <vector>
#define USE_FLASH_ATTN
//#define USE_FLASH_FF
// available whisper models
enum e_model {
MODEL_UNKNOWN,
MODEL_TINY,
MODEL_BASE,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
};
static const std::map<std::string, std::pair<int, std::string>> g_lang = {
{ "en", { 0, "english", } },
{ "zh", { 1, "chinese", } },
{ "de", { 2, "german", } },
{ "es", { 3, "spanish", } },
{ "ru", { 4, "russian", } },
{ "ko", { 5, "korean", } },
{ "fr", { 6, "french", } },
{ "ja", { 7, "japanese", } },
{ "pt", { 8, "portuguese", } },
{ "tr", { 9, "turkish", } },
{ "pl", { 10, "polish", } },
{ "ca", { 11, "catalan", } },
{ "nl", { 12, "dutch", } },
{ "ar", { 13, "arabic", } },
{ "sv", { 14, "swedish", } },
{ "it", { 15, "italian", } },
{ "id", { 16, "indonesian", } },
{ "hi", { 17, "hindi", } },
{ "fi", { 18, "finnish", } },
{ "vi", { 19, "vietnamese", } },
{ "iw", { 20, "hebrew", } },
{ "uk", { 21, "ukrainian", } },
{ "el", { 22, "greek", } },
{ "ms", { 23, "malay", } },
{ "cs", { 24, "czech", } },
{ "ro", { 25, "romanian", } },
{ "da", { 26, "danish", } },
{ "hu", { 27, "hungarian", } },
{ "ta", { 28, "tamil", } },
{ "no", { 29, "norwegian", } },
{ "th", { 30, "thai", } },
{ "ur", { 31, "urdu", } },
{ "hr", { 32, "croatian", } },
{ "bg", { 33, "bulgarian", } },
{ "lt", { 34, "lithuanian", } },
{ "la", { 35, "latin", } },
{ "mi", { 36, "maori", } },
{ "ml", { 37, "malayalam", } },
{ "cy", { 38, "welsh", } },
{ "sk", { 39, "slovak", } },
{ "te", { 40, "telugu", } },
{ "fa", { 41, "persian", } },
{ "lv", { 42, "latvian", } },
{ "bn", { 43, "bengali", } },
{ "sr", { 44, "serbian", } },
{ "az", { 45, "azerbaijani", } },
{ "sl", { 46, "slovenian", } },
{ "kn", { 47, "kannada", } },
{ "et", { 48, "estonian", } },
{ "mk", { 49, "macedonian", } },
{ "br", { 50, "breton", } },
{ "eu", { 51, "basque", } },
{ "is", { 52, "icelandic", } },
{ "hy", { 53, "armenian", } },
{ "ne", { 54, "nepali", } },
{ "mn", { 55, "mongolian", } },
{ "bs", { 56, "bosnian", } },
{ "kk", { 57, "kazakh", } },
{ "sq", { 58, "albanian", } },
{ "sw", { 59, "swahili", } },
{ "gl", { 60, "galician", } },
{ "mr", { 61, "marathi", } },
{ "pa", { 62, "punjabi", } },
{ "si", { 63, "sinhala", } },
{ "km", { 64, "khmer", } },
{ "sn", { 65, "shona", } },
{ "yo", { 66, "yoruba", } },
{ "so", { 67, "somali", } },
{ "af", { 68, "afrikaans", } },
{ "oc", { 69, "occitan", } },
{ "ka", { 70, "georgian", } },
{ "be", { 71, "belarusian", } },
{ "tg", { 72, "tajik", } },
{ "sd", { 73, "sindhi", } },
{ "gu", { 74, "gujarati", } },
{ "am", { 75, "amharic", } },
{ "yi", { 76, "yiddish", } },
{ "lo", { 77, "lao", } },
{ "uz", { 78, "uzbek", } },
{ "fo", { 79, "faroese", } },
{ "ht", { 80, "haitian creole", } },
{ "ps", { 81, "pashto", } },
{ "tk", { 82, "turkmen", } },
{ "nn", { 83, "nynorsk", } },
{ "mt", { 84, "maltese", } },
{ "sa", { 85, "sanskrit", } },
{ "lb", { 86, "luxembourgish", } },
{ "my", { 87, "myanmar", } },
{ "bo", { 88, "tibetan", } },
{ "tl", { 89, "tagalog", } },
{ "mg", { 90, "malagasy", } },
{ "as", { 91, "assamese", } },
{ "tt", { 92, "tatar", } },
{ "haw", { 93, "hawaiian", } },
{ "ln", { 94, "lingala", } },
{ "ha", { 95, "hausa", } },
{ "ba", { 96, "bashkir", } },
{ "jw", { 97, "javanese", } },
{ "su", { 98, "sundanese", } },
};
static const size_t MB = 1024*1024;
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
{ MODEL_TINY, 86ull*MB },
{ MODEL_BASE, 165ull*MB },
{ MODEL_SMALL, 540ull*MB },
{ MODEL_MEDIUM, 1650ull*MB },
{ MODEL_LARGE, 3260ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
{ MODEL_TINY, 80ull*MB },
{ MODEL_BASE, 128ull*MB },
{ MODEL_SMALL, 300ull*MB },
{ MODEL_MEDIUM, 680ull*MB },
{ MODEL_LARGE, 1100ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
{ MODEL_TINY, 104ull*MB },
{ MODEL_BASE, 136ull*MB },
{ MODEL_SMALL, 208ull*MB },
{ MODEL_MEDIUM, 280ull*MB },
{ MODEL_LARGE, 354ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
{ MODEL_TINY, 94ull*MB },
{ MODEL_BASE, 96ull*MB },
{ MODEL_SMALL, 98ull*MB },
{ MODEL_MEDIUM, 100ull*MB },
{ MODEL_LARGE, 102ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
{ MODEL_TINY, 32ull*MB },
{ MODEL_BASE, 44ull*MB },
{ MODEL_SMALL, 64ull*MB },
{ MODEL_MEDIUM, 84ull*MB },
{ MODEL_LARGE, 110ull*MB },
};
struct whisper_mel {
int n_len;
int n_mel;
std::vector<float> data;
};
struct whisper_filters {
int32_t n_mel;
int32_t n_fft;
std::vector<float> data;
};
struct whisper_vocab {
using id = int32_t;
using token = std::string;
int n_vocab = 51864;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
id token_eot = 50256;
id token_sot = 50257;
id token_prev = 50360;
id token_solm = 50361; // ??
id token_not = 50362; // no timestamps
id token_beg = 50363;
// available tasks
static const id token_translate = 50358;
static const id token_transcribe = 50359;
bool is_multilingual() const {
return n_vocab == 51865;
}
};
struct whisper_result {
int64_t t;
whisper_token id;
};
struct whisper_segment {
int64_t t0;
int64_t t1;
std::string text;
};
// medium
// hparams: {
// 'n_mels': 80,
// 'n_vocab': 51864,
// 'n_audio_ctx': 1500,
// 'n_audio_state': 1024,
// 'n_audio_head': 16,
// 'n_audio_layer': 24,
// 'n_text_ctx': 448,
// 'n_text_state': 1024,
// 'n_text_head': 16,
// 'n_text_layer': 24
// }
//
// default hparams (Whisper tiny)
struct whisper_hparams {
int32_t n_vocab = 51864;
int32_t n_audio_ctx = 1500;
int32_t n_audio_state = 384;
int32_t n_audio_head = 6;
int32_t n_audio_layer = 4;
int32_t n_text_ctx = 448;
int32_t n_text_state = 384;
int32_t n_text_head = 6;
int32_t n_text_layer = 4;
int32_t n_mels = 80;
int32_t f16 = 1;
};
// audio encoding layer
struct whisper_layer_encoder {
// encoder.blocks.*.attn_ln
struct ggml_tensor * attn_ln_0_w;
struct ggml_tensor * attn_ln_0_b;
// encoder.blocks.*.attn.out
struct ggml_tensor * attn_ln_1_w;
struct ggml_tensor * attn_ln_1_b;
// encoder.blocks.*.attn.query
struct ggml_tensor * attn_q_w;
struct ggml_tensor * attn_q_b;
// encoder.blocks.*.attn.key
struct ggml_tensor * attn_k_w;
// encoder.blocks.*.attn.value
struct ggml_tensor * attn_v_w;
struct ggml_tensor * attn_v_b;
// encoder.blocks.*.mlp_ln
struct ggml_tensor * mlp_ln_w;
struct ggml_tensor * mlp_ln_b;
// encoder.blocks.*.mlp.0
struct ggml_tensor * mlp_0_w;
struct ggml_tensor * mlp_0_b;
// encoder.blocks.*.mlp.2
struct ggml_tensor * mlp_1_w;
struct ggml_tensor * mlp_1_b;
};
// token decoding layer
struct whisper_layer_decoder {
// decoder.blocks.*.attn_ln
struct ggml_tensor * attn_ln_0_w;
struct ggml_tensor * attn_ln_0_b;
// decoder.blocks.*.attn.out
struct ggml_tensor * attn_ln_1_w;
struct ggml_tensor * attn_ln_1_b;
// decoder.blocks.*.attn.query
struct ggml_tensor * attn_q_w;
struct ggml_tensor * attn_q_b;
// decoder.blocks.*.attn.key
struct ggml_tensor * attn_k_w;
// decoder.blocks.*.attn.value
struct ggml_tensor * attn_v_w;
struct ggml_tensor * attn_v_b;
// decoder.blocks.*.cross_attn_ln
struct ggml_tensor * cross_attn_ln_0_w;
struct ggml_tensor * cross_attn_ln_0_b;
// decoder.blocks.*.cross_attn.out
struct ggml_tensor * cross_attn_ln_1_w;
struct ggml_tensor * cross_attn_ln_1_b;
// decoder.blocks.*.cross_attn.query
struct ggml_tensor * cross_attn_q_w;
struct ggml_tensor * cross_attn_q_b;
// decoder.blocks.*.cross_attn.key
struct ggml_tensor * cross_attn_k_w;
// decoder.blocks.*.cross_attn.value
struct ggml_tensor * cross_attn_v_w;
struct ggml_tensor * cross_attn_v_b;
// decoder.blocks.*.mlp_ln
struct ggml_tensor * mlp_ln_w;
struct ggml_tensor * mlp_ln_b;
// decoder.blocks.*.mlp.0
struct ggml_tensor * mlp_0_w;
struct ggml_tensor * mlp_0_b;
// decoder.blocks.*.mlp.2
struct ggml_tensor * mlp_1_w;
struct ggml_tensor * mlp_1_b;
};
struct whisper_model {
e_model type = MODEL_UNKNOWN;
whisper_hparams hparams;
whisper_filters filters;
// encoder.positional_embedding
struct ggml_tensor * e_pe;
// encoder.conv1
struct ggml_tensor * e_conv_1_w;
struct ggml_tensor * e_conv_1_b;
// encoder.conv2
struct ggml_tensor * e_conv_2_w;
struct ggml_tensor * e_conv_2_b;
// encoder.ln_post
struct ggml_tensor * e_ln_w;
struct ggml_tensor * e_ln_b;
// decoder.positional_embedding
struct ggml_tensor * d_pe; // DD
// decoder.token_embedding
struct ggml_tensor * d_te; // DD
// decoder.ln
struct ggml_tensor * d_ln_w; // DD
struct ggml_tensor * d_ln_b; // DD
std::vector<whisper_layer_encoder> layers_encoder;
std::vector<whisper_layer_decoder> layers_decoder;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
struct ggml_tensor * memory_cross_k;
struct ggml_tensor * memory_cross_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
struct whisper_context {
int64_t t_load_us = 0;
int64_t t_mel_us = 0;
int64_t t_sample_us = 0;
int64_t t_encode_us = 0;
int64_t t_decode_us = 0;
int64_t t_start_us = 0;
std::vector<uint8_t> buf_model;
std::vector<uint8_t> buf_compute;
std::vector<uint8_t> buf_compute_layer;
whisper_model model;
whisper_vocab vocab;
whisper_mel mel;
std::vector<float> probs;
std::vector<float> logits;
std::vector<whisper_result> result_cur;
std::vector<whisper_segment> result_all;
std::vector<whisper_token> prompt_past;
};
// load the model from a ggml file
//
// file format:
//
// - hparams
// - pre-computed mel filters
// - vocab
// - weights
//
// see the convert-pt-to-ggml.py script for details
//
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
auto & model = wctx.model;
auto & vocab = wctx.vocab;
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
//load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
assert(hparams.n_text_state == hparams.n_audio_state);
if (hparams.n_audio_layer == 4) {
model.type = e_model::MODEL_TINY;
}
if (hparams.n_audio_layer == 6) {
model.type = e_model::MODEL_BASE;
}
if (hparams.n_audio_layer == 12) {
model.type = e_model::MODEL_SMALL;
}
if (hparams.n_audio_layer == 24) {
model.type = e_model::MODEL_MEDIUM;
}
if (hparams.n_audio_layer == 32) {
model.type = e_model::MODEL_LARGE;
}
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state);
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type));
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
// this is the total memory required to run the inference
const size_t mem_required =
wctx.buf_model.size() +
wctx.buf_compute.size() +
wctx.buf_compute_layer.size();
fprintf(stderr, "%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
}
// load mel filters
{
auto & filters = wctx.model.filters;
fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
filters.data.resize(filters.n_mel * filters.n_fft);
fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
//if (n_vocab != model.hparams.n_vocab) {
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
// return false;
//}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
}
vocab.n_vocab = model.hparams.n_vocab;
if (vocab.is_multilingual()) {
vocab.token_eot++;
vocab.token_sot++;
vocab.token_prev++;
vocab.token_solm++;
vocab.token_not++;
vocab.token_beg++;
}
if (n_vocab < model.hparams.n_vocab) {
fprintf(stderr, "%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
if (i > vocab.token_beg) {
word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
} else if (i == vocab.token_eot) {
word = "[_EOT_]";
} else if (i == vocab.token_sot) {
word = "[_SOT_]";
} else if (i == vocab.token_prev) {
word = "[_PREV_]";
} else if (i == vocab.token_not) {
word = "[_NOT_]";
} else if (i == vocab.token_beg) {
word = "[_BEG_]";
} else {
word = "[_extra_token_" + std::to_string(i) + "]";
}
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// in order to save memory and also to speed up the computation
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_audio_state = hparams.n_audio_state;
const int n_audio_layer = hparams.n_audio_layer;
const int n_text_ctx = hparams.n_text_ctx;
const int n_text_state = hparams.n_text_state;
const int n_text_layer = hparams.n_text_layer;
const int n_mels = hparams.n_mels;
// encoder
{
// TODO: F16 .. maybe not?
ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
}
// decoder
{
// TODO: F16 .. maybe not?
ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
}
// encoder layers
{
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
}
// decoder layers
{
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
//
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
}
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = wctx.buf_model.size(),
.mem_buffer = wctx.buf_model.data(),
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
auto & ctx = model.ctx;
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_audio_state = hparams.n_audio_state;
const int n_audio_layer = hparams.n_audio_layer;
const int n_text_ctx = hparams.n_text_ctx;
const int n_text_state = hparams.n_text_state;
const int n_text_layer = hparams.n_text_layer;
const int n_mels = hparams.n_mels;
model.layers_encoder.resize(n_audio_layer);
model.layers_decoder.resize(n_text_layer);
// encoder
{
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
// map by name
model.tensors["encoder.positional_embedding"] = model.e_pe;
model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
for (int i = 0; i < n_audio_layer; ++i) {
auto & layer = model.layers_encoder[i];
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
// map by name
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
}
}
// decoder
{
model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
// map by name
model.tensors["decoder.positional_embedding"] = model.d_pe;
model.tensors["decoder.token_embedding.weight"] = model.d_te;
model.tensors["decoder.ln.weight"] = model.d_ln_w;
model.tensors["decoder.ln.bias"] = model.d_ln_b;
for (int i = 0; i < n_text_layer; ++i) {
auto & layer = model.layers_decoder[i];
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
// map by name
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
}
}
}
// key + value memory
{
auto & ctx = model.ctx;
const auto & hparams = model.hparams;
const int n_text_state = hparams.n_text_state;
const int n_text_layer = hparams.n_text_layer;
const int n_text_ctx = hparams.n_text_ctx;
// key/value memory for the self-attention layer
{
const int n_mem = n_text_layer*n_text_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
// key/value memory for the cross-attention layer
{
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_mem = n_text_layer*n_audio_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
const size_t memory_size =
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
fprintf(stderr, "%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
}
// load weights
{
int n_loaded = 0;
size_t total_size = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[3] = { 1, 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
return false;
}
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
if (nelements*bpe != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
n_loaded++;
}
fprintf(stderr, "%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
if (n_loaded == 0) {
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
} else if (n_loaded != (int) model.tensors.size()) {
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), n_loaded);
return false;
}
}
fin.close();
return true;
}
// evaluate the encoder
//
// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
// part of the transformer model and returns the encoded features
//
// - model: the model
// - n_threads: number of threads to use
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
//
bool whisper_encode(
whisper_context & wctx,
const int n_threads,
const int mel_offset) {
const auto & model = wctx.model;
const auto & mel_inp = wctx.mel;
const auto & hparams = model.hparams;
const int n_ctx = hparams.n_audio_ctx;
const int n_state = hparams.n_audio_state;
const int n_head = hparams.n_audio_head;
const int n_layer = hparams.n_audio_layer;
const int N = n_ctx;
const int n_mels = hparams.n_mels;
assert(mel_inp.n_mel == n_mels);
struct ggml_init_params params = {
.mem_size = wctx.buf_compute.size(),
.mem_buffer = wctx.buf_compute.data(),
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
assert(mel->type == GGML_TYPE_F32);
{
float * dst = (float *) mel->data;
memset(dst, 0, ggml_nbytes(mel));
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
}
}
}
struct ggml_tensor * cur;
// convolution + gelu
{
cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
cur = ggml_add(ctx0,
ggml_repeat(ctx0,
model.e_conv_1_b,
cur),
cur);
cur = ggml_gelu(ctx0, cur);
cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0,
model.e_conv_2_b,
cur),
cur);
cur = ggml_gelu(ctx0, cur);
}
cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
struct ggml_tensor * inpL = cur;
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers_encoder[il];
// create separate context for each layer to reduce memory usage
struct ggml_init_params paramsL = {
.mem_size = wctx.buf_compute_layer.size(),
.mem_buffer = wctx.buf_compute_layer.data(),
};
struct ggml_context * ctxL = ggml_init(paramsL);
// norm
{
cur = ggml_norm(ctxL, inpL);
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
cur),
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
layer.attn_q_w,
cur);
Qcur = ggml_add(ctxL,
ggml_repeat(ctxL,
layer.attn_q_b,
Qcur),
Qcur);
//Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
// note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
layer.attn_k_w,
cur);
//Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
layer.attn_v_w,
cur);
Vcur = ggml_add(ctxL,
ggml_repeat(ctxL,
layer.attn_v_b,
Vcur),
Vcur);
// ------
#ifdef USE_FLASH_ATTN
struct ggml_tensor * Q =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Qcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Kcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * V =
ggml_cpy(ctxL,
ggml_permute(ctxL,
ggml_reshape_3d(ctxL,
Vcur,
n_state/n_head, n_head, N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
);
struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
#else
struct ggml_tensor * Q =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Qcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Kcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
struct ggml_tensor * KQ_scaled =
ggml_scale(ctxL,
KQ,
ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
);
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
//struct ggml_tensor * V_trans =
// ggml_permute(ctxL,
// ggml_cpy(ctxL,
// Vcur,
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
// 1, 2, 0, 3);
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
struct ggml_tensor * V =
ggml_cpy(ctxL,
ggml_permute(ctxL,
ggml_reshape_3d(ctxL,
Vcur,
n_state/n_head, n_head, N),
0, 2, 1, 3),
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
);
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
#endif
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
cur = ggml_cpy(ctxL,
KQV_merged,
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
}
// projection
{
cur = ggml_mul_mat(ctxL,
layer.attn_ln_1_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
cur);
}
// add the input
cur = ggml_add(ctxL, cur, inpL);
struct ggml_tensor * inpFF = cur;
// feed-forward network
{
// norm
{
cur = ggml_norm(ctxL, inpFF);
// cur = mlp_ln_w*cur + mlp_ln_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
cur),
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
}
#ifdef USE_FLASH_FF
cur = ggml_flash_ff(ctxL,
ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
#else
// fully connected
cur = ggml_mul_mat(ctxL,
layer.mlp_0_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.mlp_0_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctxL, cur);
// projection
cur = ggml_mul_mat(ctxL,
layer.mlp_1_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.mlp_1_b, cur),
cur);
#endif
}
// output from this layer
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
{
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
ggml_build_forward_expand(&gf, inpO);
ggml_graph_compute (ctxL, &gf);
//ggml_graph_print(&gf);
}
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
// input for next layer (inpO -> inpL)
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
inpL->op = GGML_OP_NONE;
inpL->src0 = NULL;
inpL->src1 = NULL;
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
ggml_free(ctxL);
}
cur = inpL;
// norm
{
cur = ggml_norm(ctx0, cur);
// cur = ln_f_g*cur + ln_f_b
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.e_ln_w, cur),
cur),
ggml_repeat(ctx0, model.e_ln_b, cur));
}
// run the computation
{
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
ggml_build_forward_expand(&gf, cur);
ggml_graph_compute (ctx0, &gf);
//ggml_graph_print(&gf);
}
// cur
//{
// printf("ne0 = %d\n", cur->ne[0]);
// printf("ne1 = %d\n", cur->ne[1]);
// for (int i = 0; i < 10; ++i) {
// printf("%8.4f ", ((float *)(cur->data))[i]);
// }
// printf("... ");
// for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
// printf("%8.4f ", ((float *)(cur->data))[i]);
// }
// printf("\n");
//}
// pre-compute cross-attention memory
{
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
// TODO: hack to disconnect the encoded features from the previous graph
cur->op = GGML_OP_NONE;
cur->src0 = NULL;
cur->src1 = NULL;
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
auto & layer = model.layers_decoder[il];
struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
layer.cross_attn_k_w,
cur);
Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
layer.cross_attn_v_w,
cur);
Vcross = ggml_add(ctx0,
ggml_repeat(ctx0,
layer.cross_attn_v_b,
Vcross),
Vcross);
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
}
ggml_graph_compute(ctx0, &gf);
}
////////////////////////////////////////////////////////////////////////////
//printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
ggml_free(ctx0);
return true;
}
// evaluate the decoder
//
// given text prompt + audio features -> predicts the probabilities for the next token
//
// - model: the model
// - n_threads: number of threads to use
// - tokens: text prompt
// - n_tokens: number of tokens in the prompt
// - n_past: number of past tokens to prefix the prompt with
//
bool whisper_decode(
whisper_context & wctx,
const int n_threads,
const whisper_token * tokens,
const int n_tokens,
const int n_past) {
const auto & model = wctx.model;
const auto & hparams = model.hparams;
auto & logits_out = wctx.logits;
auto & probs_out = wctx.probs;
const int n_vocab = hparams.n_vocab;
const int n_ctx = hparams.n_text_ctx;
const int n_state = hparams.n_text_state;
const int n_head = hparams.n_text_head;
const int n_layer = hparams.n_text_layer;
const int N = n_tokens;
const int M = hparams.n_audio_ctx;
struct ggml_init_params params = {
.mem_size = wctx.buf_compute.size(),
.mem_buffer = wctx.buf_compute.data(),
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, tokens, N*ggml_element_size(embd));
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; ++i) {
((int32_t *) position->data)[i] = n_past + i;
}
// token encoding + position encoding
struct ggml_tensor * cur =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.d_te, embd),
ggml_get_rows(ctx0, model.d_pe, position));
struct ggml_tensor * inpL = cur;
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers_decoder[il];
struct ggml_init_params paramsL = {
.mem_size = wctx.buf_compute_layer.size(),
.mem_buffer = wctx.buf_compute_layer.data(),
};
struct ggml_context * ctxL = ggml_init(paramsL);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
// norm
{
cur = ggml_norm(ctxL, inpL);
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
cur),
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
layer.attn_q_w,
cur);
Qcur = ggml_add(ctxL,
ggml_repeat(ctxL,
layer.attn_q_b,
Qcur),
Qcur);
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
// note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
layer.attn_k_w,
cur);
Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
layer.attn_v_w,
cur);
Vcur = ggml_add(ctxL,
ggml_repeat(ctxL,
layer.attn_v_b,
Vcur),
Vcur);
// store key and value to memory
{
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
}
// ------
struct ggml_tensor * Q =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Qcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctxL,
ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
n_state/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
//struct ggml_tensor * KQ_scaled =
// ggml_scale(ctxL,
// KQ,
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
// );
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
struct ggml_tensor * V_trans =
ggml_permute(ctxL,
ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
n_state/n_head, n_head, n_past + N),
1, 2, 0, 3);
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
cur = ggml_cpy(ctxL,
KQV_merged,
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
}
{
cur = ggml_mul_mat(ctxL,
layer.attn_ln_1_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
cur);
}
// add the input
struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
// norm
{
cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
cur),
ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
}
// cross-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
layer.cross_attn_q_w,
cur);
Qcur = ggml_add(ctxL,
ggml_repeat(ctxL,
layer.cross_attn_q_b,
Qcur),
Qcur);
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
// Kcross is already scaled
struct ggml_tensor * Kcross =
ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
n_state/n_head, n_head, M);
struct ggml_tensor * Vcross =
ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
n_state/n_head, n_head, M);
// ------
struct ggml_tensor * Q =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Qcur,
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
//struct ggml_tensor * KQ_scaled =
// ggml_scale(ctxL,
// KQ,
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
// );
// no masking for cross-attention
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_state, N)
cur = ggml_cpy(ctxL,
KQV_merged,
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
}
// projection
{
cur = ggml_mul_mat(ctxL,
layer.cross_attn_ln_1_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
cur);
}
// add the input
cur = ggml_add(ctxL, cur, inpCA);
struct ggml_tensor * inpFF = cur;
// feed-forward network
{
// norm
{
cur = ggml_norm(ctxL, inpFF);
// cur = mlp_ln_w*cur + mlp_ln_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
cur),
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
}
// fully connected
cur = ggml_mul_mat(ctxL,
layer.mlp_0_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.mlp_0_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctxL, cur);
// projection
cur = ggml_mul_mat(ctxL,
layer.mlp_1_w,
cur);
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.mlp_1_b, cur),
cur);
}
// output from this layer
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
{
ggml_build_forward_expand(&gf, inpO);
ggml_graph_compute (ctxL, &gf);
//ggml_graph_print(&gf);
}
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
// input for next layer (inpO -> inpL)
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
inpL->op = GGML_OP_NONE;
inpL->src0 = NULL;
inpL->src1 = NULL;
if (N > 1) {
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
}
ggml_free(ctxL);
}
cur = inpL;
// norm
{
cur = ggml_norm(ctx0, cur);
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.d_ln_w, cur),
cur),
ggml_repeat(ctx0, model.d_ln_b, cur));
}
struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
// logits -> probs
cur = ggml_dup(ctx0, logits);
cur = ggml_soft_max(ctx0, cur); // in-place
// run the computation
{
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
ggml_build_forward_expand(&gf, cur);
ggml_graph_compute (ctx0, &gf);
}
logits_out.resize(N*n_vocab);
memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
probs_out.resize(N*n_vocab);
memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
if (N > 1) {
//const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
//printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
//printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
}
ggml_free(ctx0);
return true;
}
// the most basic sampling scheme - select the top token
whisper_vocab::id whisper_sample_best(
const whisper_vocab & vocab,
const float * probs, bool need_timestamp) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
probs_id.reserve(n_logits);
for (int i = 0; i < n_logits; i++) {
probs_id.push_back(std::make_pair(probs[i], i));
}
const int top_k = 4;
// find the top K tokens
std::partial_sort(
probs_id.begin(),
probs_id.begin() + top_k, probs_id.end(),
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
return a.first > b.first;
});
probs_id.resize(top_k);
//printf("\n");
//for (int i = 0; i < (int) probs_id.size(); i++) {
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
//}
if (need_timestamp) {
// at the end of the 30-second audio segment, we start giving preference to time tokens
for (int i = 0; i < top_k; i++) {
if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) {
return probs_id[i].second;
}
}
}
int res = 0;
while ((probs_id[res].second == vocab.token_sot ||
probs_id[res].second == vocab.token_solm ||
probs_id[res].second == vocab.token_not) &&
res < (int) probs_id.size() - 1) {
res++;
}
return probs_id[res].second;
}
// samples only from the timestamps tokens
whisper_vocab::id whisper_sample_timestamp(
const whisper_vocab & vocab,
const float * probs) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
probs_id.reserve(n_logits);
for (int i = vocab.token_beg + 1; i < n_logits; i++) {
probs_id.push_back(std::make_pair(probs[i], i));
}
const int top_k = 10;
// find the top K tokens
std::partial_sort(
probs_id.begin(),
probs_id.begin() + top_k, probs_id.end(),
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
return a.first > b.first;
});
probs_id.resize(top_k);
//printf("\n");
//for (int i = 0; i < (int) probs_id.size(); i++) {
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
//}
return probs_id[0].second;
}
static std::string to_timestamp(int64_t t) {
int64_t sec = t/100;
int64_t msec = t - sec*100;
int64_t min = sec/60;
sec = sec - min*60;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
return std::string(buf);
}
// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
void dft(const std::vector<float> & in, std::vector<float> & out) {
int N = in.size();
out.resize(N*2);
for (int k = 0; k < N; k++) {
float re = 0;
float im = 0;
for (int n = 0; n < N; n++) {
float angle = 2*M_PI*k*n/N;
re += in[n]*cos(angle);
im -= in[n]*sin(angle);
}
out[k*2 + 0] = re;
out[k*2 + 1] = im;
}
}
// Cooley-Tukey FFT
// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
void fft(const std::vector<float> & in, std::vector<float> & out) {
out.resize(in.size()*2);
int N = in.size();
if (N == 1) {
out[0] = in[0];
out[1] = 0;
return;
}
if (N%2 == 1) {
dft(in, out);
return;
}
std::vector<float> even;
std::vector<float> odd;
for (int i = 0; i < N; i++) {
if (i % 2 == 0) {
even.push_back(in[i]);
} else {
odd.push_back(in[i]);
}
}
std::vector<float> even_fft;
std::vector<float> odd_fft;
fft(even, even_fft);
fft(odd, odd_fft);
for (int k = 0; k < N/2; k++) {
float theta = 2*M_PI*k/N;
float re = cos(theta);
float im = -sin(theta);
float re_odd = odd_fft[2*k + 0];
float im_odd = odd_fft[2*k + 1];
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
}
}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
bool log_mel_spectrogram(
const float * samples,
const int n_samples,
const int sample_rate,
const int fft_size,
const int fft_step,
const int n_mel,
const int n_threads,
const whisper_filters & filters,
whisper_mel & mel) {
// Hanning window
std::vector<float> hann;
hann.resize(fft_size);
for (int i = 0; i < fft_size; i++) {
hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
}
mel.n_mel = n_mel;
mel.n_len = (n_samples)/fft_step;
mel.data.resize(mel.n_mel*mel.n_len);
const int n_fft = 1 + fft_size/2;
//printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
//printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
std::vector<std::thread> workers(n_threads);
for (int iw = 0; iw < n_threads; ++iw) {
workers[iw] = std::thread([&](int ith) {
std::vector<float> fft_in;
fft_in.resize(fft_size);
for (int i = 0; i < fft_size; i++) {
fft_in[i] = 0.0;
}
std::vector<float> fft_out;
fft_out.resize(2*fft_size);
for (int i = ith; i < mel.n_len; i += n_threads) {
const int offset = i*fft_step;
// apply Hanning window
for (int j = 0; j < fft_size; j++) {
if (offset + j < n_samples) {
fft_in[j] = hann[j]*samples[offset + j];
} else {
fft_in[j] = 0.0;
}
}
// FFT -> mag^2
fft(fft_in, fft_out);
for (int j = 0; j < fft_size; j++) {
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
}
for (int j = 1; j < fft_size/2; j++) {
//if (i == 0) {
// printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
//}
fft_out[j] += fft_out[fft_size - j];
}
if (i == 0) {
//for (int j = 0; j < fft_size; j++) {
// printf("%d: %e\n", j, fft_out[j]);
//}
}
// mel spectrogram
for (int j = 0; j < mel.n_mel; j++) {
double sum = 0.0;
for (int k = 0; k < n_fft; k++) {
sum += fft_out[k]*filters.data[j*n_fft + k];
}
if (sum < 1e-10) {
sum = 1e-10;
}
sum = log10(sum);
mel.data[j*mel.n_len + i] = sum;
}
}
}, iw);
}
for (int iw = 0; iw < n_threads; ++iw) {
workers[iw].join();
}
// clamping and normalization
double mmax = -1e20;
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
if (mel.data[i] > mmax) {
mmax = mel.data[i];
}
}
//printf("%s: max = %f\n", __func__, mmax);
mmax -= 8.0;
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
if (mel.data[i] < mmax) {
mel.data[i] = mmax;
}
mel.data[i] = (mel.data[i] + 4.0)/4.0;
}
return true;
}
//
// interface implementation
//
struct whisper_context * whisper_init(const char * path_model) {
ggml_time_init();
whisper_context * ctx = new whisper_context;
const int64_t t_start_us = ggml_time_us();
ctx->t_start_us = t_start_us;
if (!whisper_model_load(path_model, *ctx)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
return NULL;
}
ctx->t_load_us = ggml_time_us() - t_start_us;
return ctx;
}
void whisper_free(struct whisper_context * ctx) {
if (ctx) {
delete ctx;
}
}
int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
const int64_t t_start_us = ggml_time_us();
if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) {
fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__);
return -1;
}
ctx->t_mel_us = ggml_time_us() - t_start_us;
return 0;
}
int whisper_set_mel(
struct whisper_context * ctx,
const float * data,
int n_len,
int n_mel) {
if (n_mel != WHISPER_N_MEL) {
fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL);
return -1;
}
ctx->mel.n_len = n_len;
ctx->mel.n_mel = n_mel;
ctx->mel.data.resize(n_len*n_mel);
memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float));
return 0;
}
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
const int64_t t_start_us = ggml_time_us();
if (!whisper_encode(*ctx, n_threads, offset)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return -1;
}
ctx->t_encode_us += ggml_time_us() - t_start_us;
return 0;
}
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
const int64_t t_start_us = ggml_time_us();
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
ctx->t_decode_us += ggml_time_us() - t_start_us;
return 0;
}
whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp) {
const int64_t t_start_sample_us = ggml_time_us();
// TODO: simplify
auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), need_timestamp);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
return res;
}
whisper_token whisper_sample_timestamp(struct whisper_context * ctx) {
const int64_t t_start_sample_us = ggml_time_us();
// TODO: simplify
auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
return res;
}
int whisper_lang_id(const char * lang) {
if (!g_lang.count(lang)) {
fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
return -1;
}
return g_lang.at(lang).first;
}
int whisper_n_len(struct whisper_context * ctx) {
return ctx->mel.n_len;
}
int whisper_n_vocab(struct whisper_context * ctx) {
return ctx->vocab.n_vocab;
}
int whisper_n_text_ctx(struct whisper_context * ctx) {
return ctx->model.hparams.n_text_ctx;
}
int whisper_is_multilingual(struct whisper_context * ctx) {
return ctx->vocab.is_multilingual() ? 1 : 0;
}
float * whisper_get_probs(struct whisper_context * ctx) {
return ctx->probs.data();
}
const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) {
return ctx->vocab.id_to_token.at(token).c_str();
}
whisper_token whisper_token_eot(struct whisper_context * ctx) {
return ctx->vocab.token_eot;
}
whisper_token whisper_token_sot(struct whisper_context * ctx) {
return ctx->vocab.token_sot;
}
whisper_token whisper_token_prev(struct whisper_context * ctx) {
return ctx->vocab.token_prev;
}
whisper_token whisper_token_solm(struct whisper_context * ctx) {
return ctx->vocab.token_solm;
}
whisper_token whisper_token_not(struct whisper_context * ctx) {
return ctx->vocab.token_not;
}
whisper_token whisper_token_beg(struct whisper_context * ctx) {
return ctx->vocab.token_beg;
}
whisper_token whisper_token_translate() {
return whisper_vocab::token_translate;
}
whisper_token whisper_token_transcribe() {
return whisper_vocab::token_transcribe;
}
void whisper_print_timings(struct whisper_context * ctx) {
const int64_t t_end_us = ggml_time_us();
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f);
fprintf(stderr, "%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f);
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f);
fprintf(stderr, "%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer);
fprintf(stderr, "%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
}
////////////////////////////////////////////////////////////////////////////
struct whisper_full_params whisper_full_default_params(enum whisper_decode_strategy strategy) {
struct whisper_full_params result;
switch (strategy) {
case WHISPER_DECODE_GREEDY:
{
result = {
.strategy = WHISPER_DECODE_GREEDY,
.n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()),
.offset_ms = 0,
.translate = false,
.no_context = false,
.print_special_tokens = false,
.print_progress = true,
.print_realtime = false,
.print_timestamps = true,
.language = "en",
.greedy = {
.n_past = 0,
},
};
} break;
case WHISPER_DECODE_BEAM_SEARCH:
{
result = {
.strategy = WHISPER_DECODE_GREEDY,
.n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()),
.offset_ms = 0,
.translate = false,
.no_context = false,
.print_special_tokens = false,
.print_progress = true,
.print_realtime = false,
.print_timestamps = true,
.language = "en",
.beam_search = {
.n_past = 0,
.beam_width = 10,
.n_best = 5,
},
};
} break;
}
return result;
}
int whisper_full(
struct whisper_context * ctx,
struct whisper_full_params params,
const float * samples,
int n_samples) {
// compute log mel spectrogram
if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) {
fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
return -1;
}
// if length of spectrogram is less than 1s (100 samples), then return
// basically don't process anything that is less than 1s
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
if (whisper_n_len(ctx) < 100) {
return 0;
}
// the accumulated text context so far
auto & prompt_past = ctx->prompt_past;
if (params.no_context) {
prompt_past.clear();
}
// these tokens determine the task that will be performed
std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
if (whisper_is_multilingual(ctx)) {
prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language));
if (params.translate) {
prompt_init.push_back(whisper_token_translate());
} else {
prompt_init.push_back(whisper_token_transcribe());
}
}
auto & result_all = ctx->result_all;
auto & result_cur = ctx->result_cur;
result_all.clear();
int progress_prev = 0;
int progress_step = 5;
// main loop
int seek = params.offset_ms/10;
while (true) {
int progress_cur = (100*seek)/whisper_n_len(ctx);
while (progress_cur >= progress_prev + progress_step) {
progress_prev += progress_step;
if (params.print_progress) {
fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress_prev);
}
}
if (seek + 100 >= whisper_n_len(ctx)) {
break;
}
// encode audio features starting at offset seek
if (whisper_encode(ctx, seek, params.n_threads) != 0) {
fprintf(stderr, "%s: failed to encode\n", __func__);
return 7;
}
std::vector<whisper_token> prompt;
int n_past = 0;
// if we have already generated some text, use it as a prompt to condition the next generation
if (prompt_past.size() > 0) {
int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size()));
prompt = { whisper_token_prev(ctx) };
prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
prompt_past.clear();
prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
}
prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
bool done = false;
int seek_delta = 100*WHISPER_CHUNK_SIZE;
// print the prompt
//printf("\n\n");
//for (int i = 0; i < prompt.size(); i++) {
// printf("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token[prompt[i]].c_str());
//}
//printf("\n\n");
// the accumulated transcription in the current interation
int result_len = 0;
result_cur.clear();
for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) {
if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) {
fprintf(stderr, "%s: failed to decode\n", __func__);
return 8;
}
n_past += prompt.size();
prompt.clear();
// very basic greedy sampling strategy:
//
// - always take the most probable token
//
// more sophisticated sampling strategies could be implemented here, but we keep it simple
// feel free to experiment!
//
{
whisper_token id = 0;
whisper_token tid = whisper_token_beg(ctx);
id = whisper_sample_best(ctx, result_len == 0);
if (i > 0) {
tid = whisper_sample_timestamp(ctx);
}
// update sliding window
if (id > whisper_token_beg(ctx)) {
seek_delta = 2*(id - whisper_token_beg(ctx));
result_len = i + 1;
}
// add it to the context
prompt.push_back(id);
result_cur.push_back({ seek + 2*(tid - whisper_token_beg(ctx)), id });
//printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str());
// end of text token
if (id == whisper_token_eot(ctx)) {
if (result_len == 0) {
result_len = i + 1;
}
break;
}
}
if (done) {
break;
}
}
result_cur.resize(result_len);
for (const auto & r : result_cur) {
prompt_past.push_back(r.id);
}
// store the text from this iteration
if (result_cur.size() > 0) {
auto t0 = result_cur.front().t;
std::string text = "";
for (int i = 0; i < (int) result_cur.size(); i++) {
if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) {
} else {
text += whisper_token_to_str(ctx, result_cur[i].id);
}
if (result_cur[i].id > whisper_token_beg(ctx)) {
const auto t1 = result_cur[i].t;
if (!text.empty()) {
if (params.print_realtime) {
if (params.print_timestamps) {
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
} else {
printf("%s", text.c_str());
fflush(stdout);
}
}
result_all.push_back({ t0, t1, text });
}
text = "";
while (i < (int) result_cur.size() && result_cur[i].id > whisper_token_beg(ctx)) {
i++;
}
i--;
t0 = result_cur[i].t;
}
}
if (!text.empty()) {
const auto t1 = seek + seek_delta;
if (params.print_realtime) {
if (params.print_timestamps) {
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
} else {
printf("%s", text.c_str());
fflush(stdout);
}
}
result_all.push_back({ t0, t1, text });
}
}
seek += seek_delta;
}
return 0;
}
int whisper_full_n_segments(struct whisper_context * ctx) {
return ctx->result_all.size();
}
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
return ctx->result_all[i_segment].t0;
}
int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) {
return ctx->result_all[i_segment].t1;
}
const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) {
return ctx->result_all[i_segment].text.c_str();
}