You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
7.1 KiB
235 lines
7.1 KiB
# Convert a model checkpoint to a ggml compatible file
|
|
#
|
|
# Load the model using TensorFlow.
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# By default, the bigger matrices are converted to 16-bit floats.
|
|
# This can be disabled by adding the "use-f32" CLI argument.
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import sys
|
|
import json
|
|
import struct
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
# helper method to convert a numpy array to different float types
|
|
def convert_to_ftype(data, ftype):
|
|
# fp16
|
|
if ftype == 1:
|
|
return data.astype(np.float16)
|
|
|
|
# qint4_0
|
|
# C code:
|
|
# {
|
|
# for (int l = 0; l < QK; l++) {
|
|
# const float v = src[i*QK + l];
|
|
# amax = MAX(amax, fabsf(v));
|
|
# }
|
|
#
|
|
# const float d = amax / ((1 << (QB - 1)) - 1);
|
|
# const float id = d ? 1.0/d : 0.0;
|
|
#
|
|
# pd[i] = GGML_FP32_TO_GQ(d);
|
|
#
|
|
# for (int l = 0; l < QK; l++) {
|
|
# const float v = src[i*QK + l]*id;
|
|
# const int8_t vi = ((int8_t) (round(v))) + 8;
|
|
# assert(vi >= 0 && vi < 16);
|
|
# pp[l/2] |= (vi & 0xf) << (4*(l & 1));
|
|
# }
|
|
#
|
|
# memcpy(pb + i*QK/2, pp, sizeof(pp));
|
|
# }
|
|
if ftype == 2:
|
|
assert data.dtype == np.float32
|
|
assert data.shape[-1] % 64 == 0
|
|
|
|
# create 2 new arrays:
|
|
# - pd: float32 (lowest dimension is data.shape[-1] // 64)
|
|
# - pb: int8
|
|
pd = np.zeros(data.shape[:-1] + (data.shape[-1] // 64,), dtype=np.float32)
|
|
pb = np.zeros(data.shape[:-1] + (data.shape[-1], ), dtype=np.int8)
|
|
|
|
# the quantized data goes here
|
|
dst = np.zeros((data.size // 64) * (4 + 32), dtype=np.uint8)
|
|
|
|
print("data:", data.shape, data.size)
|
|
print("pd: ", pd.shape, pd.size)
|
|
print("pb: ", pb.shape, pb.size)
|
|
print("dst: ", dst.shape, dst.size)
|
|
|
|
for i in range(0, data.shape[-1], 64):
|
|
max_abs = np.max(np.abs(data[..., i:i+64]))
|
|
max_q = (1 << 3) - 1
|
|
d = max_abs / max_q
|
|
id = 1.0 / d if d != 0 else 0.0
|
|
pd[..., i//64] = d
|
|
|
|
for j in range(64):
|
|
v = data[..., i+j] * id
|
|
vi = np.round(v).astype(np.int8) + 8
|
|
assert np.all(vi >= 0) and np.all(vi < 16)
|
|
|
|
#ve = vi[...,(j & 1) == 0].reshape(-1, 1)
|
|
|
|
#print("ve:", ve.shape, ve)
|
|
#print("vo:", vo.shape, vo)
|
|
#print("pb:", pb[..., (i+j)//2].shape, pb[..., (i+j)//2])
|
|
|
|
pb[..., i+j] = vi
|
|
|
|
# convert to 1D array
|
|
pd = pd.reshape(-1, 1)
|
|
pb = pb.reshape(-1, 1)
|
|
|
|
# populate the destination array
|
|
n = data.size
|
|
for i in range(0, n, 64):
|
|
d = pd[i//64][0]
|
|
b = pb[i:i+64].reshape(-1)
|
|
#print("d:", d)
|
|
#print("b:", b)
|
|
|
|
db = struct.unpack("4B", struct.pack("f", d))
|
|
dst[(i//64)*36 + 0] = db[0]
|
|
dst[(i//64)*36 + 1] = db[1]
|
|
dst[(i//64)*36 + 2] = db[2]
|
|
dst[(i//64)*36 + 3] = db[3]
|
|
for j in range(32):
|
|
dst[(i//64)*36 + 4 + j] = b[j] | (b[j+1] << 4)
|
|
|
|
return dst
|
|
|
|
assert False, "Invalid ftype: " + str(ftype)
|
|
|
|
if len(sys.argv) < 2:
|
|
print("Usage: convert-ckpt-to-ggml.py dir-model [use-f32]\n")
|
|
sys.exit(1)
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
with open(dir_model + "/encoder.json", "r") as f:
|
|
encoder = json.load(f)
|
|
|
|
with open(dir_model + "/hparams.json", "r") as f:
|
|
hparams = json.load(f)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
# ftype == 2 -> qint4_0
|
|
# ftype == 3 -> qint4_1
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16", "q4_0", "q4_1"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 3:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
|
list_vars = tf.train.list_variables(dir_model)
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["n_vocab"]))
|
|
fout.write(struct.pack("i", hparams["n_ctx"]))
|
|
fout.write(struct.pack("i", hparams["n_embd"]))
|
|
fout.write(struct.pack("i", hparams["n_head"]))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
|
|
|
fout.write(struct.pack("i", len(encoder)))
|
|
|
|
for key in encoder:
|
|
text = bytearray([byte_decoder[c] for c in key])
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
for name, shape in list_vars:
|
|
print("Processing variable: " + name + " with shape: ", shape)
|
|
|
|
data = tf.train.load_variable(dir_model, name).squeeze()
|
|
n_dims = len(data.shape);
|
|
|
|
# for efficiency - transpose the projection matrices
|
|
if name[-13:] == "/mlp/c_proj/w":
|
|
print(" Transposing")
|
|
data = data.transpose()
|
|
|
|
dshape = data.shape
|
|
|
|
ftype_cur = 0
|
|
if ftype != 0:
|
|
# match name:
|
|
# "model/wte"
|
|
# "model/h.*/attn/c_attn/w"
|
|
# "model/h.*/attn/c_proj/w"
|
|
# "model/h.*/mlp/c_fc/w"
|
|
# "model/h.*/mlp/c_proj/w"
|
|
if name == "model/wte" or name[-2:] == "/w":
|
|
print(" Converting to " + ftype_str[ftype])
|
|
data = convert_to_ftype(data, ftype)
|
|
ftype_cur = ftype
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
|
fout.write(str);
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("")
|