You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
4.7 KiB
151 lines
4.7 KiB
# Convert GPT-J-6B h5 transformer model to ggml format
|
|
#
|
|
# Load the model using GPTJForCausalLM.
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# By default, the bigger matrices are converted to 16-bit floats.
|
|
# This can be disabled by adding the "use-f32" CLI argument.
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import sys
|
|
import struct
|
|
import json
|
|
import torch
|
|
import numpy as np
|
|
|
|
from transformers import GPTJForCausalLM
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
if len(sys.argv) < 2:
|
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
|
|
sys.exit(1)
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
with open(dir_model + "/vocab.json", "r") as f:
|
|
encoder = json.load(f)
|
|
|
|
with open(dir_model + "/added_tokens.json", "r") as f:
|
|
encoder_added = json.load(f)
|
|
|
|
with open(dir_model + "/config.json", "r") as f:
|
|
hparams = json.load(f)
|
|
|
|
# use 16-bit or 32-bit floats
|
|
use_f16 = True
|
|
if len(sys.argv) > 2:
|
|
use_f16 = False
|
|
fname_out = sys.argv[1] + "/ggml-model-f32.bin"
|
|
|
|
model = GPTJForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
|
|
#print (model)
|
|
|
|
list_vars = model.state_dict()
|
|
#print (list_vars)
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("i", hparams["n_positions"]))
|
|
fout.write(struct.pack("i", hparams["n_embd"]))
|
|
fout.write(struct.pack("i", hparams["n_head"]))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", hparams["rotary_dim"]))
|
|
fout.write(struct.pack("i", use_f16))
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
|
|
|
fout.write(struct.pack("i", len(encoder) + len(encoder_added)))
|
|
for key in encoder:
|
|
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
for key in encoder_added:
|
|
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable: " + name + " with shape: ", data.shape)
|
|
|
|
# we don't need these
|
|
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
|
print(" Skipping variable: " + name)
|
|
continue
|
|
|
|
n_dims = len(data.shape);
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype = 0;
|
|
if use_f16:
|
|
if name[-7:] == ".weight" and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype = 1
|
|
|
|
# for efficiency - transpose these matrices:
|
|
# "transformer.h.*.mlp.fc_in.weight
|
|
# "transformer.h.*.attn.out_proj.weight
|
|
# "transformer.h.*.attn.q_proj.weight"
|
|
# "transformer.h.*.attn.k_proj.weight"
|
|
# "transformer.h.*.attn.v_proj.weight"
|
|
if name.endswith(".mlp.fc_in.weight") or \
|
|
name.endswith(".attn.out_proj.weight") or \
|
|
name.endswith(".attn.q_proj.weight") or \
|
|
name.endswith(".attn.k_proj.weight") or \
|
|
name.endswith(".attn.v_proj.weight"):
|
|
print(" Transposing")
|
|
data = data.transpose()
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str);
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("")
|