You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ggml/tests/test-vec1.c

547 lines
20 KiB

#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <sys/time.h>
#include <immintrin.h>
const int N = 1 << 14;
const int M = 768;
//
// naive implementation
//
void mul_mat_vec_f32_0(
const float * restrict src0,
const float * restrict src1,
float * dst,
int nrows,
int ncols) {
for (int i = 0; i < nrows; i++) {
float sum = 0.0f;
for (int j = 0; j < ncols; j++) {
sum += src0[i*ncols + j]*src1[j];
}
dst[i] = sum;
}
}
//
// SIMD with 8 32-bit floats
//
float reduce_vector8_0(__m256 v) {
__m128 v1 = _mm256_extractf128_ps(v, 0);
__m128 v2 = _mm256_extractf128_ps(v, 1);
__m128 v3 = _mm_add_ps(v1, v2);
__m128 v4 = _mm_shuffle_ps(v3, v3, 0x4e);
__m128 v5 = _mm_add_ps(v3, v4);
__m128 v6 = _mm_shuffle_ps(v5, v5, 0x11);
__m128 v7 = _mm_add_ps(v5, v6);
return _mm_cvtss_f32(v7);
}
// vectorized implementation using AVX
void mul_mat_vec_f32_1(
const float * restrict src0,
const float * restrict src1,
float * dst,
int nrows,
int ncols) {
const int ncols8 = ncols & ~7;
for (int i = 0; i < nrows; i++) {
__m256 sum = _mm256_setzero_ps();
for (int j = 0; j < ncols8; j += 8) {
__m256 a = _mm256_loadu_ps(src0 + i*ncols + j);
__m256 b = _mm256_loadu_ps(src1 + j);
__m256 c = _mm256_mul_ps(a, b);
sum = _mm256_add_ps(sum, c);
}
dst[i] = reduce_vector8_0(sum);
for (int j = ncols8; j < ncols; j++) {
dst[i] += src0[i*ncols + j]*src1[j];
}
}
}
void mul_mat_vec_f32_2(
const float * restrict src0,
const float * restrict src1,
float * dst,
int nrows,
int ncols) {
const int ncols32 = ncols & ~31;
for (int i = 0; i < nrows; i++) {
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
__m256 sum2 = _mm256_setzero_ps();
__m256 sum3 = _mm256_setzero_ps();
const float * restrict src0_row = src0 + i*ncols;
for (int j = 0; j < ncols32; j += 32) {
__m256 a0 = _mm256_loadu_ps(src0_row + j + 0);
__m256 a1 = _mm256_loadu_ps(src0_row + j + 8);
__m256 a2 = _mm256_loadu_ps(src0_row + j + 16);
__m256 a3 = _mm256_loadu_ps(src0_row + j + 24);
__m256 b0 = _mm256_loadu_ps(src1 + j + 0);
__m256 b1 = _mm256_loadu_ps(src1 + j + 8);
__m256 b2 = _mm256_loadu_ps(src1 + j + 16);
__m256 b3 = _mm256_loadu_ps(src1 + j + 24);
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
}
dst[i] = reduce_vector8_0(_mm256_add_ps(_mm256_add_ps(sum0, sum1), _mm256_add_ps(sum2, sum3)));
for (int j = ncols32; j < ncols; j++) {
dst[i] += src0[i*ncols + j]*src1[j];
}
}
}
//
// SIMD with 8 16-bit floats
//
static inline float fp32_from_bits(uint32_t w) {
#if defined(__OPENCL_VERSION__)
return as_float(w);
#elif defined(__CUDA_ARCH__)
return __uint_as_float((unsigned int) w);
#elif defined(__INTEL_COMPILER)
return _castu32_f32(w);
#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
return _CopyFloatFromInt32((__int32) w);
#else
union {
uint32_t as_bits;
float as_value;
} fp32 = { w };
return fp32.as_value;
#endif
}
static inline uint32_t fp32_to_bits(float f) {
#if defined(__OPENCL_VERSION__)
return as_uint(f);
#elif defined(__CUDA_ARCH__)
return (uint32_t) __float_as_uint(f);
#elif defined(__INTEL_COMPILER)
return _castf32_u32(f);
#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
return (uint32_t) _CopyInt32FromFloat(f);
#else
union {
float as_value;
uint32_t as_bits;
} fp32 = { f };
return fp32.as_bits;
#endif
}
/*
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
* a 32-bit floating-point number in IEEE single-precision format.
*
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
* floating-point operations and bitcasts between integer and floating-point variables.
*/
static inline float fp16_ieee_to_fp32_value(uint16_t h) {
/*
* Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
* +---+-----+------------+-------------------+
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
* +---+-----+------------+-------------------+
* Bits 31 26-30 16-25 0-15
*
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
*/
const uint32_t w = (uint32_t) h << 16;
/*
* Extract the sign of the input number into the high bit of the 32-bit word:
*
* +---+----------------------------------+
* | S |0000000 00000000 00000000 00000000|
* +---+----------------------------------+
* Bits 31 0-31
*/
const uint32_t sign = w & UINT32_C(0x80000000);
/*
* Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
*
* +-----+------------+---------------------+
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
* +-----+------------+---------------------+
* Bits 27-31 17-26 0-16
*/
const uint32_t two_w = w + w;
/*
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
* of a single-precision floating-point number:
*
* S|Exponent | Mantissa
* +-+---+-----+------------+----------------+
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
* +-+---+-----+------------+----------------+
* Bits | 23-31 | 0-22
*
* Next, there are some adjustments to the exponent:
* - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
* formats (0x7F - 0xF = 0x70)
* - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
* Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
* of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
* by the difference in the exponent bias (see above).
* - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
* exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
* The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
* partially IEEE754-compliant implementations.
*
* Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
* operate on denormal inputs, and do not produce denormal results.
*/
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
/*
* Convert denormalized half-precision inputs into single-precision results (always normalized).
* Zero inputs are also handled here.
*
* In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
* First, we shift mantissa into bits 0-9 of the 32-bit word.
*
* zeros | mantissa
* +---------------------------+------------+
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
* +---------------------------+------------+
* Bits 10-31 0-9
*
* Now, remember that denormalized half-precision numbers are represented as:
* FP16 = mantissa * 2**(-24).
* The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
* and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
* A normalized single-precision floating-point number is represented as:
* FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
* Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
* number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
*
* The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
* is zero, the constructed single-precision number has the value of
* FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
* Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
* the input half-precision number.
*/
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
/*
* - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
* input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
* input is either a denormal number, or zero.
* - Combine the result of conversion of exponent and mantissa with the sign of the input number.
*/
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
/*
* Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
* IEEE half-precision format, in bit representation.
*
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
* floating-point operations and bitcasts between integer and floating-point variables.
*/
static inline uint16_t fp16_ieee_from_fp32_value(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
void mul_mat_vec_f16_0(
const uint16_t * src0,
const uint16_t * src1,
float * dst,
int nrows,
int ncols) {
const int ncols8 = ncols & ~7;
for (int i = 0; i < nrows; i++) {
__m256 sum = _mm256_setzero_ps();
const uint16_t * src0_row = src0 + i * ncols;
for (int j = 0; j < ncols8; j += 8) {
__m256 a = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j)));
__m256 b = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
sum = _mm256_fmadd_ps(a, b, sum);
}
dst[i] = reduce_vector8_0(sum);
for (int j = ncols8; j < ncols; j++) {
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
}
}
}
void mul_mat_vec_f16_1(
const uint16_t * src0,
const uint16_t * src1,
float * dst,
int nrows,
int ncols) {
const int ncols16 = ncols & ~15;
for (int i = 0; i < nrows; i++) {
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
const uint16_t * src0_row = src0 + i * ncols;
for (int j = 0; j < ncols16; j += 16) {
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
__m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
__m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
}
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1);
for (int j = ncols16; j < ncols; j++) {
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
}
}
}
void mul_mat_vec_f16_2(
const uint16_t * src0,
const uint16_t * src1,
float * dst,
int nrows,
int ncols) {
const int ncols32 = ncols & ~31;
for (int i = 0; i < nrows; i++) {
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
__m256 sum2 = _mm256_setzero_ps();
__m256 sum3 = _mm256_setzero_ps();
const uint16_t * src0_row = src0 + i * ncols;
for (int j = 0; j < ncols32; j += 32) {
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
__m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
__m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
__m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
__m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
__m256 b2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 16)));
__m256 b3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 24)));
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
}
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
for (int j = ncols32; j < ncols; j++) {
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
}
}
}
void mul_mat_vec_f16_3(
const uint16_t * src0,
const float * src1,
float * dst,
int nrows,
int ncols) {
const int ncols32 = ncols & ~31;
for (int i = 0; i < nrows; i++) {
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
__m256 sum2 = _mm256_setzero_ps();
__m256 sum3 = _mm256_setzero_ps();
const uint16_t * src0_row = src0 + i * ncols;
for (int j = 0; j < ncols32; j += 32) {
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
__m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
__m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
__m256 b0 = _mm256_loadu_ps(src1 + j);
__m256 b1 = _mm256_loadu_ps(src1 + j + 8);
__m256 b2 = _mm256_loadu_ps(src1 + j + 16);
__m256 b3 = _mm256_loadu_ps(src1 + j + 24);
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
}
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
for (int j = ncols32; j < ncols; j++) {
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
}
}
}
uint64_t get_time_us() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
int main(int argc, const char ** argv) {
float * src0 = (float *)malloc(sizeof(float)*N*M);
float * src1 = (float *)malloc(sizeof(float)*M);
float * dst = (float *)malloc(sizeof(float)*N);
//float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
//float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
//float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
for (int i = 0; i < N*M; i++) {
src0[i] = rand() / (float)RAND_MAX;
}
for (int i = 0; i < M; i++) {
src1[i] = rand() / (float)RAND_MAX;
}
// convert src0 and src1 to __fp16
uint16_t * src0_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*N*M));
uint16_t * src1_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*M));
//uint16_t * src0_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*N*M));
//uint16_t * src1_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*M));
{
const uint64_t t_start = get_time_us();
for (int i = 0; i < N*M; i++) {
src0_fp16[i] = fp16_ieee_from_fp32_value(src0[i]);
//printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
//assert(!isnan(fp16_ieee_to_fp32_value(src0_fp16[i])));
}
for (int i = 0; i < M; i++) {
src1_fp16[i] = fp16_ieee_from_fp32_value(src1[i]);
}
const uint64_t t_end = get_time_us();
printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
}
for (int i = 0; i < 16; ++i) {
printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
}
int method = 0;
if (argc > 1) {
method = atoi(argv[1]);
}
const int nIter = 1000;
const clock_t start = clock();
const uint64_t start_us = get_time_us();
double iM = 1.0/M;
double sum = 0.0f;
for (int i = 0; i < nIter; i++) {
if (method == 0) {
mul_mat_vec_f32_0(src0, src1, dst, N, M);
}
if (method == 1) {
mul_mat_vec_f32_1(src0, src1, dst, N, M);
}
if (method == 2) {
mul_mat_vec_f32_2(src0, src1, dst, N, M);
}
if (method == 3) {
mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
}
if (method == 4) {
mul_mat_vec_f16_1(src0_fp16, src1_fp16, dst, N, M);
}
if (method == 5) {
mul_mat_vec_f16_2(src0_fp16, src1_fp16, dst, N, M);
}
if (method == 6) {
mul_mat_vec_f16_3(src0_fp16, src1, dst, N, M);
}
}
for (int i = 0; i < N; i++) {
sum += dst[i]*iM;
}
{
const clock_t end = clock();
const uint64_t end_us = get_time_us();
printf("%s: elapsed ticks: %ld\n", __func__, end - start);
printf("%s: elapsed us: %ld\n", __func__, end_us - start_us);
}
printf("%f\n", sum);
free(src0);
free(src1);
free(dst);
free(src0_fp16);
free(src1_fp16);
return 0;
}