# Convert a model checkpoint to a ggml compatible file # # Load the model using TensorFlow. # Iterate over all variables and write them to a binary file. # # For each variable, write the following: # - Number of dimensions (int) # - Name length (int) # - Dimensions (int[n_dims]) # - Name (char[name_length]) # - Data (float[n_dims]) # # By default, the bigger matrices are converted to 16-bit floats. # This can be disabled by adding the "use-f32" CLI argument. # # At the start of the ggml file we write the model parameters # and vocabulary. # import sys import json import struct import numpy as np import tensorflow as tf # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # helper method to convert a numpy array to different float types def convert_to_ftype(data, ftype): # fp16 if ftype == 1: return data.astype(np.float16) assert False, "Invalid ftype: " + str(ftype) if len(sys.argv) < 3: print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" with open(dir_model + "/encoder.json", "r") as f: encoder = json.load(f) with open(dir_model + "/hparams.json", "r") as f: hparams = json.load(f) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" list_vars = tf.train.list_variables(dir_model) fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["n_vocab"])) fout.write(struct.pack("i", hparams["n_ctx"])) fout.write(struct.pack("i", hparams["n_embd"])) fout.write(struct.pack("i", hparams["n_head"])) fout.write(struct.pack("i", hparams["n_layer"])) fout.write(struct.pack("i", ftype)) byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} fout.write(struct.pack("i", len(encoder))) for key in encoder: text = bytearray([byte_decoder[c] for c in key]) fout.write(struct.pack("i", len(text))) fout.write(text) for name, shape in list_vars: print("Processing variable: " + name + " with shape: ", shape) data = tf.train.load_variable(dir_model, name).squeeze() n_dims = len(data.shape); # for efficiency - transpose the projection matrices # "model/h.*/attn/c_attn/w" # "model/h.*/attn/c_proj/w" # "model/h.*/mlp/c_fc/w" # "model/h.*/mlp/c_proj/w" if name[-14:] == "/attn/c_attn/w" or \ name[-14:] == "/attn/c_proj/w" or \ name[-11:] == "/mlp/c_fc/w" or \ name[-13:] == "/mlp/c_proj/w": print(" Transposing") data = data.transpose() dshape = data.shape ftype_cur = 0 if ftype != 0: # match name: # "model/wte" # "model/h.*/attn/c_attn/w" # "model/h.*/attn/c_proj/w" # "model/h.*/mlp/c_fc/w" # "model/h.*/mlp/c_proj/w" if name == "model/wte" or name[-2:] == "/w": print(" Converting to " + ftype_str[ftype]) data = convert_to_ftype(data, ftype) ftype_cur = ftype else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", dshape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")