#pragma once #ifdef __cplusplus extern "C" { #endif #include #include #include #define GGML_MAX_DIMS 4 #define GGML_MAX_NODES 4096 #define GGML_MAX_PARAMS 16 #define GGML_MAX_CONTEXTS 16 #ifdef __ARM_NEON // we use the built-in 16-bit float type typedef __fp16 ggml_fp16_t; #else typedef uint16_t ggml_fp16_t; #endif float ggml_fp16_to_fp32(ggml_fp16_t x); ggml_fp16_t ggml_fp32_to_fp16(float x); struct ggml_object; struct ggml_context; enum ggml_type { GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_F32, GGML_TYPE_COUNT, }; enum ggml_op { GGML_OP_NONE = 0, GGML_OP_DUP, GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV, GGML_OP_SQR, GGML_OP_SQRT, GGML_OP_SUM, GGML_OP_MEAN, GGML_OP_REPEAT, GGML_OP_ABS, GGML_OP_SGN, GGML_OP_NEG, GGML_OP_STEP, GGML_OP_RELU, GGML_OP_GELU, GGML_OP_NORM, // normalize GGML_OP_MUL_MAT, GGML_OP_SCALE, GGML_OP_CPY, GGML_OP_RESHAPE, GGML_OP_VIEW, GGML_OP_PERMUTE, GGML_OP_TRANSPOSE, GGML_OP_GET_ROWS, GGML_OP_DIAG_MASK_INF, GGML_OP_SOFT_MAX, GGML_OP_ROPE, GGML_OP_COUNT, }; // n-dimensional tensor struct ggml_tensor { enum ggml_type type; int n_dims; int ne[GGML_MAX_DIMS]; // number of elements size_t nb[GGML_MAX_DIMS]; // stride in bytes: // nb[0] = sizeof(type) // nb[1] = nb[0] * ne[0] + padding // nb[i] = nb[i-1] * ne[i-1] // compute data enum ggml_op op; bool is_param; struct ggml_tensor * grad; struct ggml_tensor * src0; struct ggml_tensor * src1; // thread scheduling int n_tasks; // performance int perf_runs; int64_t perf_cycles; int64_t perf_time_us; void * data; char pad[8]; }; // computation graph struct ggml_cgraph { int n_nodes; int n_leafs; int n_threads; size_t work_size; struct ggml_tensor * work; struct ggml_tensor * nodes[GGML_MAX_NODES]; struct ggml_tensor * grads[GGML_MAX_NODES]; struct ggml_tensor * leafs[GGML_MAX_NODES]; // performance int perf_runs; int64_t perf_cycles; int64_t perf_time_us; }; struct ggml_init_params { // memory pool size_t mem_size; // bytes void * mem_buffer; // if NULL, memory will be allocated internally }; int64_t ggml_time_ms(void); int64_t ggml_time_us(void); int64_t ggml_cycles(void); int64_t ggml_cycles_per_ms(void); void ggml_print_object (const struct ggml_object * obj); void ggml_print_objects(const struct ggml_context * ctx); int ggml_nelements(const struct ggml_tensor * tensor); size_t ggml_nbytes (const struct ggml_tensor * tensor); size_t ggml_type_size (enum ggml_type type); size_t ggml_element_size(const struct ggml_tensor * tensor); struct ggml_context * ggml_init(struct ggml_init_params params); void ggml_free(struct ggml_context * ctx); size_t ggml_used_mem(const struct ggml_context * ctx); struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, enum ggml_type type, int n_dims, const int *ne); struct ggml_tensor * ggml_new_tensor_1d( struct ggml_context * ctx, enum ggml_type type, int ne0); struct ggml_tensor * ggml_new_tensor_2d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1); struct ggml_tensor * ggml_new_tensor_3d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1, int ne2); struct ggml_tensor * ggml_new_tensor_4d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1, int ne2, int ne3); struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); void * ggml_get_data (const struct ggml_tensor * tensor); float * ggml_get_data_f32(const struct ggml_tensor * tensor); // // operations on tensors with backpropagation // struct ggml_tensor * ggml_dup( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_add( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_sub( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_mul( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_div( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_sqr( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_sqrt( struct ggml_context * ctx, struct ggml_tensor * a); // return scalar // TODO: compute sum along rows struct ggml_tensor * ggml_sum( struct ggml_context * ctx, struct ggml_tensor * a); // mean along rows struct ggml_tensor * ggml_mean( struct ggml_context * ctx, struct ggml_tensor * a); // if a is the same shape as b, and a is not parameter, return a // otherwise, return a new tensor: repeat(a) to fit in b struct ggml_tensor * ggml_repeat( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_abs( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_sgn( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_neg( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_step( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_relu( struct ggml_context * ctx, struct ggml_tensor * a); // TODO: double-check this computation is correct struct ggml_tensor * ggml_gelu( struct ggml_context * ctx, struct ggml_tensor * a); // normalize along rows // TODO: eps is hardcoded to 1e-5 for now struct ggml_tensor * ggml_norm( struct ggml_context * ctx, struct ggml_tensor * a); // A: m rows, n columns // B: p rows, n columns (i.e. we transpose it internally) // result is m columns, p rows struct ggml_tensor * ggml_mul_mat( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // // operations on tensors without backpropagation // // in-place, returns view(a) struct ggml_tensor * ggml_scale( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // a -> b, return view(b) struct ggml_tensor * ggml_cpy( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // return view(a), b specifies the new shape // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // return view(a) // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape_2d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1); // return view(a) // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape_3d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1, int ne2); // offset in bytes struct ggml_tensor * ggml_view_1d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, size_t offset); struct ggml_tensor * ggml_view_2d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1, size_t nb1, // row stride in bytes size_t offset); struct ggml_tensor * ggml_permute( struct ggml_context * ctx, struct ggml_tensor * a, int axis0, int axis1, int axis2, int axis3); // alias for ggml_permute(ctx, a, 1, 0, 2, 3) struct ggml_tensor * ggml_transpose( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_get_rows( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // set elements above the diagonal to -INF // in-place, returns view(a) struct ggml_tensor * ggml_diag_mask_inf( struct ggml_context * ctx, struct ggml_tensor * a, int n_past); // in-place, returns view(a) struct ggml_tensor * ggml_soft_max( struct ggml_context * ctx, struct ggml_tensor * a); // rotary position embedding // in-place, returns view(a) // if mode == 1, skip n_past elements // TODO: avoid creating a new tensor every time struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, int n_dims, int mode); // // automatic differentiation // void ggml_set_param( struct ggml_context * ctx, struct ggml_tensor * tensor); void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); void ggml_graph_reset (struct ggml_cgraph * cgraph); // print info and performance information for the graph void ggml_graph_print(const struct ggml_cgraph * cgraph); // dump the graph into a file using the dot format void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); // // optimization // // optimization methods enum ggml_opt_type { GGML_OPT_ADAM, GGML_OPT_LBFGS, }; // linesearch methods enum ggml_linesearch { GGML_LINESEARCH_DEFAULT = 1, GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, }; // optimization return values enum ggml_opt_result { GGML_OPT_OK = 0, GGML_OPT_DID_NOT_CONVERGE, GGML_OPT_NO_CONTEXT, GGML_OPT_INVALID_WOLFE, GGML_OPT_FAIL, GGML_LINESEARCH_FAIL = -128, GGML_LINESEARCH_MINIMUM_STEP, GGML_LINESEARCH_MAXIMUM_STEP, GGML_LINESEARCH_MAXIMUM_ITERATIONS, GGML_LINESEARCH_INVALID_PARAMETERS, }; // optimization parameters // // see ggml.c (ggml_opt_default_params) for default values // struct ggml_opt_params { enum ggml_opt_type type; int n_threads; // delta-based convergence test // // if past == 0 - disabled // if past > 0: // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) // int past; float delta; // maximum number of iterations without improvement // // if 0 - disabled // if > 0: // assume convergence if no cost improvement in this number of iterations // int max_no_improvement; bool print_forward_graph; bool print_backward_graph; union { // ADAM parameters struct { int n_iter; float alpha; // learning rate float beta1; float beta2; float eps; // epsilon for numerical stability float eps_f; // epsilon for convergence test float eps_g; // epsilon for convergence test } adam; // LBFGS parameters struct { int m; // number of corrections to approximate the inv. Hessian int n_iter; int max_linesearch; float eps; // convergence tolerance float ftol; // line search tolerance float wolfe; float min_step; float max_step; enum ggml_linesearch linesearch; } lbfgs; }; }; struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); // optimize the function defined by the tensor f enum ggml_opt_result ggml_opt( struct ggml_context * ctx, struct ggml_opt_params params, struct ggml_tensor * f); #ifdef __cplusplus } #endif