#include "ggml/ggml.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #define QK 32 size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k) { const int nb = k / QK; const size_t row_size = nb*(sizeof(float) + sizeof(uint8_t)*QK/2); assert(k % QK == 0); uint8_t pp[QK/2]; char * pdst = (char *) dst; for (int j = 0; j < n; j += k) { float * pd = (float *) (pdst + (j/k)*row_size); uint8_t * pb = (uint8_t *) (pd + nb); for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max { for (int l = 0; l < QK; l++) { const float v = src[j + i*QK + l]; amax = std::max(amax, fabsf(v)); } const float d = amax / ((1 << 3) - 1); const float id = d ? 1.0f/d : 0.0f; pd[i] = d; for (int l = 0; l < QK; l += 2) { const float v0 = (src[j + i*QK + l + 0])*id; const float v1 = (src[j + i*QK + l + 1])*id; const uint8_t vi0 = ((int8_t) (round(v0))) + 8; const uint8_t vi1 = ((int8_t) (round(v1))) + 8; assert(vi0 >= 0 && vi0 < 16); assert(vi1 >= 0 && vi1 < 16); pp[l/2] = vi0 | (vi1 << 4); } memcpy(pb + i*QK/2, pp, sizeof(pp)); } } } return (n/k)*row_size; } size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k) { const int nb = k / QK; const size_t row_size = nb*(2*sizeof(float) + sizeof(uint8_t)*QK/2); assert(k % QK == 0); uint8_t pp[QK/2]; char * pdst = (char *) dst; for (int j = 0; j < n; j += k) { float * pm = (float *) (pdst + (j/k)*row_size); float * pd = (float *) (pm + nb); uint8_t * pb = (uint8_t *) (pd + nb); //printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb); for (int i = 0; i < nb; i++) { float min = std::numeric_limits::max(); float max = std::numeric_limits::min(); { for (int l = 0; l < QK; l++) { const float v = src[j + i*QK + l]; if (v < min) min = v; if (v > max) max = v; } const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; pm[i] = min; pd[i] = d; for (int l = 0; l < QK; l += 2) { const float v0 = (src[j + i*QK + l + 0] - min)*id; const float v1 = (src[j + i*QK + l + 1] - min)*id; const uint8_t vi0 = round(v0); const uint8_t vi1 = round(v1); assert(vi0 >= 0 && vi0 < 16); assert(vi1 >= 0 && vi1 < 16); pp[l/2] = vi0 | (vi1 << 4); } memcpy(pb + i*QK/2, pp, sizeof(pp)); } } } return (n/k)*row_size; } // default hparams (GPT-J 6B) struct gptj_hparams { int32_t n_vocab = 50400; int32_t n_ctx = 2048; int32_t n_embd = 4096; int32_t n_head = 16; int32_t n_layer = 28; int32_t n_rot = 64; int32_t f16 = 1; }; // quantize a model bool gptj_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) { ggml_type type = GGML_TYPE_Q4_1; switch (itype) { case 2: type = GGML_TYPE_Q4_0; break; case 3: type = GGML_TYPE_Q4_1; break; default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1; }; if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) { fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type); return false; } gpt_vocab vocab; printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str()); auto finp = std::ifstream(fname_inp, std::ios::binary); if (!finp) { fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str()); return false; } auto fout = std::ofstream(fname_out, std::ios::binary); if (!fout) { fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str()); return false; } // verify magic { uint32_t magic; finp.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str()); return false; } fout.write((char *) &magic, sizeof(magic)); } gptj_hparams hparams; // load hparams { finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); finp.read((char *) &hparams.n_head, sizeof(hparams.n_head)); finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); finp.read((char *) &hparams.f16, sizeof(hparams.f16)); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: f16 = %d\n", __func__, hparams.f16); fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fout.write((char *) &hparams.n_head, sizeof(hparams.n_head)); fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fout.write((char *) &itype, sizeof(hparams.f16)); } // load vocab { int32_t n_vocab = 0; finp.read ((char *) &n_vocab, sizeof(n_vocab)); fout.write((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab); return false; } std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; finp.read ((char *) &len, sizeof(len)); fout.write((char *) &len, sizeof(len)); word.resize(len); finp.read ((char *) word.data(), len); fout.write((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // load weights { size_t total_size_org = 0; size_t total_size_new = 0; std::vector data; std::vector work; while (true) { int32_t n_dims; int32_t length; int32_t ftype; finp.read(reinterpret_cast(&n_dims), sizeof(n_dims)); finp.read(reinterpret_cast(&length), sizeof(length)); finp.read(reinterpret_cast(&ftype), sizeof(ftype)); if (finp.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { finp.read (reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); finp.read (&name[0], length); { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]); } if (ftype != 0) { fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype); return false; } data.resize(nelements); finp.read(reinterpret_cast(data.data()), nelements * sizeof(float)); // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors quantize &= (n_dims == 2); if (quantize) { ftype = itype; } fout.write(reinterpret_cast(&n_dims), sizeof(n_dims)); fout.write(reinterpret_cast(&length), sizeof(length)); fout.write(reinterpret_cast(&ftype), sizeof(ftype)); for (int i = 0; i < n_dims; ++i) { fout.write(reinterpret_cast(&ne[i]), sizeof(ne[i])); } fout.write(&name[0], length); if (quantize) { printf("quantizing .. "); work.resize(nelements); // for quantization size_t cur_size = 0; switch (type) { case GGML_TYPE_Q4_0: { cur_size = ggml_quantize_q4_0(data.data(), work.data(), nelements, ne[0]); } break; case GGML_TYPE_Q4_1: { cur_size = ggml_quantize_q4_1(data.data(), work.data(), nelements, ne[0]); } break; default: { fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type); return false; } } fout.write(reinterpret_cast(work.data()), cur_size); total_size_new += cur_size; printf("size = %8.2f MB -> %8.2f MB\n", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0); } else { printf("\n"); fout.write(reinterpret_cast(data.data()), nelements * sizeof(float)); total_size_new += nelements * sizeof(float); } total_size_org += nelements * sizeof(float); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); } finp.close(); fout.close(); return true; } // usage: // ./gpt-2-quantize models/gpt-2-117M/ggml-model.bin models/gpt-2-117M/ggml-model-quant.bin type // int main(int argc, char ** argv) { if (argc != 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]); fprintf(stderr, " type = 2 - q4_0\n"); fprintf(stderr, " type = 3 - q4_1\n"); return 1; } const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; const int itype = atoi(argv[3]); const int64_t t_main_start_us = ggml_time_us(); int64_t t_quantize_us = 0; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gptj_model_quantize(fname_inp, fname_out, itype)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } t_quantize_us = ggml_time_us() - t_start_us; } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n"); printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } return 0; }