#define WHISPER_BUILD #include "whisper.h" #include "ggml.h" #include #include #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #define USE_FLASH_ATTN //#define USE_FLASH_FF // available whisper models enum e_model { MODEL_UNKNOWN, MODEL_TINY, MODEL_BASE, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, }; static const std::map> g_lang = { { "en", { 0, "english", } }, { "zh", { 1, "chinese", } }, { "de", { 2, "german", } }, { "es", { 3, "spanish", } }, { "ru", { 4, "russian", } }, { "ko", { 5, "korean", } }, { "fr", { 6, "french", } }, { "ja", { 7, "japanese", } }, { "pt", { 8, "portuguese", } }, { "tr", { 9, "turkish", } }, { "pl", { 10, "polish", } }, { "ca", { 11, "catalan", } }, { "nl", { 12, "dutch", } }, { "ar", { 13, "arabic", } }, { "sv", { 14, "swedish", } }, { "it", { 15, "italian", } }, { "id", { 16, "indonesian", } }, { "hi", { 17, "hindi", } }, { "fi", { 18, "finnish", } }, { "vi", { 19, "vietnamese", } }, { "iw", { 20, "hebrew", } }, { "uk", { 21, "ukrainian", } }, { "el", { 22, "greek", } }, { "ms", { 23, "malay", } }, { "cs", { 24, "czech", } }, { "ro", { 25, "romanian", } }, { "da", { 26, "danish", } }, { "hu", { 27, "hungarian", } }, { "ta", { 28, "tamil", } }, { "no", { 29, "norwegian", } }, { "th", { 30, "thai", } }, { "ur", { 31, "urdu", } }, { "hr", { 32, "croatian", } }, { "bg", { 33, "bulgarian", } }, { "lt", { 34, "lithuanian", } }, { "la", { 35, "latin", } }, { "mi", { 36, "maori", } }, { "ml", { 37, "malayalam", } }, { "cy", { 38, "welsh", } }, { "sk", { 39, "slovak", } }, { "te", { 40, "telugu", } }, { "fa", { 41, "persian", } }, { "lv", { 42, "latvian", } }, { "bn", { 43, "bengali", } }, { "sr", { 44, "serbian", } }, { "az", { 45, "azerbaijani", } }, { "sl", { 46, "slovenian", } }, { "kn", { 47, "kannada", } }, { "et", { 48, "estonian", } }, { "mk", { 49, "macedonian", } }, { "br", { 50, "breton", } }, { "eu", { 51, "basque", } }, { "is", { 52, "icelandic", } }, { "hy", { 53, "armenian", } }, { "ne", { 54, "nepali", } }, { "mn", { 55, "mongolian", } }, { "bs", { 56, "bosnian", } }, { "kk", { 57, "kazakh", } }, { "sq", { 58, "albanian", } }, { "sw", { 59, "swahili", } }, { "gl", { 60, "galician", } }, { "mr", { 61, "marathi", } }, { "pa", { 62, "punjabi", } }, { "si", { 63, "sinhala", } }, { "km", { 64, "khmer", } }, { "sn", { 65, "shona", } }, { "yo", { 66, "yoruba", } }, { "so", { 67, "somali", } }, { "af", { 68, "afrikaans", } }, { "oc", { 69, "occitan", } }, { "ka", { 70, "georgian", } }, { "be", { 71, "belarusian", } }, { "tg", { 72, "tajik", } }, { "sd", { 73, "sindhi", } }, { "gu", { 74, "gujarati", } }, { "am", { 75, "amharic", } }, { "yi", { 76, "yiddish", } }, { "lo", { 77, "lao", } }, { "uz", { 78, "uzbek", } }, { "fo", { 79, "faroese", } }, { "ht", { 80, "haitian creole", } }, { "ps", { 81, "pashto", } }, { "tk", { 82, "turkmen", } }, { "nn", { 83, "nynorsk", } }, { "mt", { 84, "maltese", } }, { "sa", { 85, "sanskrit", } }, { "lb", { 86, "luxembourgish", } }, { "my", { 87, "myanmar", } }, { "bo", { 88, "tibetan", } }, { "tl", { 89, "tagalog", } }, { "mg", { 90, "malagasy", } }, { "as", { 91, "assamese", } }, { "tt", { 92, "tatar", } }, { "haw", { 93, "hawaiian", } }, { "ln", { 94, "lingala", } }, { "ha", { 95, "hausa", } }, { "ba", { 96, "bashkir", } }, { "jw", { 97, "javanese", } }, { "su", { 98, "sundanese", } }, }; static const size_t MB = 1024*1024; static const std::map MEM_REQ_MODEL = { { MODEL_TINY, 74ull*MB }, { MODEL_BASE, 142ull*MB }, { MODEL_SMALL, 466ull*MB }, { MODEL_MEDIUM, 1464ull*MB }, { MODEL_LARGE, 2952ull*MB }, }; static const std::map MEM_REQ_MEMORY = { { MODEL_TINY, 12ull*MB }, { MODEL_BASE, 24ull*MB }, { MODEL_SMALL, 70ull*MB }, { MODEL_MEDIUM, 184ull*MB }, { MODEL_LARGE, 306ull*MB }, }; static const std::map MEM_REQ_ENCODE = { { MODEL_TINY, 80ull*MB }, { MODEL_BASE, 128ull*MB }, { MODEL_SMALL, 300ull*MB }, { MODEL_MEDIUM, 680ull*MB }, { MODEL_LARGE, 1100ull*MB }, }; static const std::map MEM_REQ_ENCODE_LAYER = { { MODEL_TINY, 104ull*MB }, { MODEL_BASE, 138ull*MB }, { MODEL_SMALL, 208ull*MB }, { MODEL_MEDIUM, 280ull*MB }, { MODEL_LARGE, 354ull*MB }, }; static const std::map MEM_REQ_DECODE = { { MODEL_TINY, 200ull*MB }, { MODEL_BASE, 202ull*MB }, { MODEL_SMALL, 204ull*MB }, { MODEL_MEDIUM, 206ull*MB }, { MODEL_LARGE, 208ull*MB }, }; static const std::map MEM_REQ_DECODE_LAYER = { { MODEL_TINY, 32ull*MB }, { MODEL_BASE, 44ull*MB }, { MODEL_SMALL, 64ull*MB }, { MODEL_MEDIUM, 84ull*MB }, { MODEL_LARGE, 110ull*MB }, }; struct whisper_mel { int n_len; int n_mel; std::vector data; }; struct whisper_filters { int32_t n_mel; int32_t n_fft; std::vector data; }; struct whisper_vocab { using id = int32_t; using token = std::string; int n_vocab = 51864; std::map token_to_id; std::map id_to_token; // used to avoid memory allocations during sampling // TODO: move to whisper_context in the future std::vector> probs_id; id token_eot = 50256; id token_sot = 50257; id token_prev = 50360; id token_solm = 50361; // ?? id token_not = 50362; // no timestamps id token_beg = 50363; // available tasks static const id token_translate = 50358; static const id token_transcribe = 50359; bool is_multilingual() const { return n_vocab == 51865; } }; struct whisper_segment { int64_t t0; int64_t t1; std::string text; std::vector tokens; }; // medium // hparams: { // 'n_mels': 80, // 'n_vocab': 51864, // 'n_audio_ctx': 1500, // 'n_audio_state': 1024, // 'n_audio_head': 16, // 'n_audio_layer': 24, // 'n_text_ctx': 448, // 'n_text_state': 1024, // 'n_text_head': 16, // 'n_text_layer': 24 // } // // default hparams (Whisper tiny) struct whisper_hparams { int32_t n_vocab = 51864; int32_t n_audio_ctx = 1500; int32_t n_audio_state = 384; int32_t n_audio_head = 6; int32_t n_audio_layer = 4; int32_t n_text_ctx = 448; int32_t n_text_state = 384; int32_t n_text_head = 6; int32_t n_text_layer = 4; int32_t n_mels = 80; int32_t f16 = 1; }; // audio encoding layer struct whisper_layer_encoder { // encoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // encoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // encoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // encoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // encoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // encoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // encoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // encoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; // token decoding layer struct whisper_layer_decoder { // decoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // decoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // decoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // decoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // decoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // decoder.blocks.*.cross_attn_ln struct ggml_tensor * cross_attn_ln_0_w; struct ggml_tensor * cross_attn_ln_0_b; // decoder.blocks.*.cross_attn.out struct ggml_tensor * cross_attn_ln_1_w; struct ggml_tensor * cross_attn_ln_1_b; // decoder.blocks.*.cross_attn.query struct ggml_tensor * cross_attn_q_w; struct ggml_tensor * cross_attn_q_b; // decoder.blocks.*.cross_attn.key struct ggml_tensor * cross_attn_k_w; // decoder.blocks.*.cross_attn.value struct ggml_tensor * cross_attn_v_w; struct ggml_tensor * cross_attn_v_b; // decoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // decoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // decoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; struct whisper_model { e_model type = MODEL_UNKNOWN; whisper_hparams hparams; whisper_filters filters; // encoder.positional_embedding struct ggml_tensor * e_pe; // encoder.conv1 struct ggml_tensor * e_conv_1_w; struct ggml_tensor * e_conv_1_b; // encoder.conv2 struct ggml_tensor * e_conv_2_w; struct ggml_tensor * e_conv_2_b; // encoder.ln_post struct ggml_tensor * e_ln_w; struct ggml_tensor * e_ln_b; // decoder.positional_embedding struct ggml_tensor * d_pe; // DD // decoder.token_embedding struct ggml_tensor * d_te; // DD // decoder.ln struct ggml_tensor * d_ln_w; // DD struct ggml_tensor * d_ln_b; // DD std::vector layers_encoder; std::vector layers_decoder; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; struct ggml_tensor * memory_cross_k; struct ggml_tensor * memory_cross_v; // context struct ggml_context * ctx; struct ggml_context * ctx_mem; // tensors int n_loaded; std::map tensors; }; struct whisper_context { int64_t t_load_us = 0; int64_t t_mel_us = 0; int64_t t_sample_us = 0; int64_t t_encode_us = 0; int64_t t_decode_us = 0; int64_t t_start_us = 0; std::vector * buf_model; // the model buffer is read-only and can be shared between processors std::vector buf_memory; std::vector buf_compute; std::vector buf_compute_layer; whisper_model model; whisper_vocab vocab; whisper_mel mel; std::vector probs; std::vector logits; std::vector result_all; std::vector prompt_past; // [EXPERIMENTAL] token-level timestamps data int64_t t_beg; int64_t t_last; whisper_token tid_last; std::vector energy; // PCM signal energy // [EXPERIMENTAL] speed-up techniques int32_t exp_n_audio_ctx; // 0 - use default }; template static void read_safe(std::ifstream& fin, T& dest) { fin.read((char*)& dest, sizeof(T)); } // load the model from a ggml file // // file format: // // - hparams // - pre-computed mel filters // - vocab // - weights // // see the convert-pt-to-ggml.py script for details // static bool whisper_model_load(const std::string & fname, whisper_context & wctx) { fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str()); auto & model = wctx.model; auto & vocab = wctx.vocab; auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; read_safe(fin, magic); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } //load hparams { auto & hparams = model.hparams; read_safe(fin, hparams.n_vocab); read_safe(fin, hparams.n_audio_ctx); read_safe(fin, hparams.n_audio_state); read_safe(fin, hparams.n_audio_head); read_safe(fin, hparams.n_audio_layer); read_safe(fin, hparams.n_text_ctx); read_safe(fin, hparams.n_text_state); read_safe(fin, hparams.n_text_head); read_safe(fin, hparams.n_text_layer); read_safe(fin, hparams.n_mels); read_safe(fin, hparams.f16); assert(hparams.n_text_state == hparams.n_audio_state); if (hparams.n_audio_layer == 4) { model.type = e_model::MODEL_TINY; } if (hparams.n_audio_layer == 6) { model.type = e_model::MODEL_BASE; } if (hparams.n_audio_layer == 12) { model.type = e_model::MODEL_SMALL; } if (hparams.n_audio_layer == 24) { model.type = e_model::MODEL_MEDIUM; } if (hparams.n_audio_layer == 32) { model.type = e_model::MODEL_LARGE; } fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state); fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head); fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels); fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: type = %d\n", __func__, model.type); wctx.buf_model = new std::vector(); wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type)); wctx.buf_memory.resize(MEM_REQ_MEMORY.at(model.type)); wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); } // load mel filters { auto & filters = wctx.model.filters; read_safe(fin, filters.n_mel); read_safe(fin, filters.n_fft); filters.data.resize(filters.n_mel * filters.n_fft); fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); } // load vocab { int32_t n_vocab = 0; read_safe(fin, n_vocab); //if (n_vocab != model.hparams.n_vocab) { // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); // return false; //} std::string word; std::vector tmp; tmp.reserve(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; read_safe(fin, len); if (len > 0) { tmp.resize(len); fin.read(&tmp[0], tmp.size()); // read to buffer word.assign(&tmp[0], tmp.size()); } else { // seems like we have an empty-string token in multi-language models (i = 50256) //fprintf(stderr, "%s: warning: empty-string token in vocab, i = %d\n", __func__, i); word = ""; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); } vocab.n_vocab = model.hparams.n_vocab; if (vocab.is_multilingual()) { vocab.token_eot++; vocab.token_sot++; vocab.token_prev++; vocab.token_solm++; vocab.token_not++; vocab.token_beg++; } if (n_vocab < model.hparams.n_vocab) { fprintf(stderr, "%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); for (int i = n_vocab; i < model.hparams.n_vocab; i++) { if (i > vocab.token_beg) { word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; } else if (i == vocab.token_eot) { word = "[_EOT_]"; } else if (i == vocab.token_sot) { word = "[_SOT_]"; } else if (i == vocab.token_prev) { word = "[_PREV_]"; } else if (i == vocab.token_not) { word = "[_NOT_]"; } else if (i == vocab.token_beg) { word = "[_BEG_]"; } else { word = "[_extra_token_" + std::to_string(i) + "]"; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } wctx.logits.reserve(vocab.n_vocab*model.hparams.n_text_ctx); wctx.probs.reserve(vocab.n_vocab*model.hparams.n_text_ctx); vocab.probs_id.reserve(n_vocab); } { // this is the total memory required to run the inference const size_t mem_required = wctx.buf_model->size() + wctx.buf_memory.size() + wctx.buf_compute.size() + wctx.buf_compute_layer.size(); fprintf(stderr, "%s: mem_required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); } // for the big tensors, we have the option to store the data in 16-bit floats // in order to save memory and also to speed up the computation const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; // encoder { // TODO: F16 .. maybe not? ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; } // decoder { // TODO: F16 .. maybe not? ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; } // encoder layers { ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b } // decoder layers { ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b // ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b } ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params; params.mem_size = wctx.buf_model->size(); params.mem_buffer = wctx.buf_model->data(); model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { auto & ctx = model.ctx; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; model.layers_encoder.resize(n_audio_layer); model.layers_decoder.resize(n_text_layer); // encoder { model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.positional_embedding"] = model.e_pe; model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; model.tensors["encoder.ln_post.weight"] = model.e_ln_w; model.tensors["encoder.ln_post.bias"] = model.e_ln_b; for (int i = 0; i < n_audio_layer; ++i) { auto & layer = model.layers_encoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; } } // decoder { model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.positional_embedding"] = model.d_pe; model.tensors["decoder.token_embedding.weight"] = model.d_te; model.tensors["decoder.ln.weight"] = model.d_ln_w; model.tensors["decoder.ln.bias"] = model.d_ln_b; for (int i = 0; i < n_text_layer; ++i) { auto & layer = model.layers_decoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; } } } // create the ggml memory context { struct ggml_init_params params; params.mem_size = wctx.buf_memory.size(); params.mem_buffer = wctx.buf_memory.data(); model.ctx_mem = ggml_init(params); if (!model.ctx_mem) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // key + value memory { auto & ctx = model.ctx_mem; const auto & hparams = model.hparams; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_text_ctx = hparams.n_text_ctx; // key/value memory for the self-attention layer { const int n_mem = n_text_layer*n_text_ctx; const int n_elements = n_text_state*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } // key/value memory for the cross-attention layer { const int n_audio_ctx = hparams.n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx; const int n_elements = n_text_state*n_mem; model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); fprintf(stderr, "%s: memory size = %7.2f MB\n", __func__, memory_size/1024.0/1024.0); } // load weights { size_t total_size = 0; model.n_loaded = 0; while (true) { int32_t n_dims; int32_t length; int32_t ftype; read_safe(fin, n_dims); read_safe(fin, length); read_safe(fin, ftype); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[3] = { 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { read_safe(fin, ne[i]); nelements *= ne[i]; } std::string name; std::vector tmp(length); // create a buffer fin.read(&tmp[0], tmp.size()); // read to buffer name.assign(&tmp[0], tmp.size()); if (model.tensors.find(name) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); return false; } const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); if (nelements*bpe != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%48s - [%5d, %5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ne[2], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); model.n_loaded++; } fprintf(stderr, "%s: model size = %7.2f MB\n", __func__, total_size/1024.0/1024.0); if (model.n_loaded == 0) { fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); } else if (model.n_loaded != (int) model.tensors.size()) { fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded); return false; } } fin.close(); return true; } // evaluate the encoder // // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder // part of the transformer model and returns the encoded features // // - model: the model // - n_threads: number of threads to use // - mel_offset: offset in the mel spectrogram (i.e. audio offset) // static bool whisper_encode( whisper_context & wctx, const int n_threads, const int mel_offset) { const auto & model = wctx.model; const auto & mel_inp = wctx.mel; const auto & hparams = model.hparams; const int n_ctx = wctx.exp_n_audio_ctx > 0 ? wctx.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_layer = hparams.n_audio_layer; const int n_mels = hparams.n_mels; assert(mel_inp.n_mel == n_mels); struct ggml_init_params params; params.mem_size = wctx.buf_compute.size(); params.mem_buffer = wctx.buf_compute.data(); struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); assert(mel->type == GGML_TYPE_F32); { float * dst = (float *) mel->data; memset(dst, 0, ggml_nbytes(mel)); const int i0 = std::min(mel_offset, mel_inp.n_len); const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); for (int j = 0; j < mel_inp.n_mel; ++j) { for (int i = i0; i < i1; ++i) { dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; } } } struct ggml_tensor * cur; // convolution + gelu { cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_1_b, cur), cur); cur = ggml_gelu(ctx0, cur); cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_2_b, cur), cur); cur = ggml_gelu(ctx0, cur); } // =================================================================== // NOTE: experimenting with partial evaluation of the encoder (ignore) //static int iter = -1; //const int n_iter = 1500/n_ctx; //iter = (iter + 1) % n_iter; //if (iter == 0) { // memset(model.memory_cross_k->data, 0, ggml_nbytes(model.memory_cross_k)); // memset(model.memory_cross_v->data, 0, ggml_nbytes(model.memory_cross_v)); //} static int iter = 0; const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe); const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter; struct ggml_tensor * e_pe = ggml_view_2d(ctx0, model.e_pe, model.e_pe->ne[0], n_ctx, e_pe_stride, e_pe_offset); cur = ggml_add(ctx0, e_pe, ggml_transpose(ctx0, cur)); // =================================================================== // original: //cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_encoder[il]; // create separate context for each layer to reduce memory usage struct ggml_init_params paramsL; paramsL.mem_size = wctx.buf_compute_layer.size(); paramsL.mem_buffer = wctx.buf_compute_layer.data(); struct ggml_context * ctxL = ggml_init(paramsL); // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // ------ #ifdef USE_FLASH_ATTN struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_cpy(ctxL, Kcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * V = ggml_cpy(ctxL, ggml_permute(ctxL, ggml_reshape_3d(ctxL, Vcur, n_state/n_head, n_head, n_ctx), 1, 2, 0, 3), ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_ctx, n_state/n_head, n_head) ); struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); #else struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_cpy(ctxL, Kcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); struct ggml_tensor * KQ_scaled = ggml_scale(ctxL, KQ, ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) ); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); //struct ggml_tensor * V_trans = // ggml_permute(ctxL, // ggml_cpy(ctxL, // Vcur, // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)), // 1, 2, 0, 3); //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * V = ggml_cpy(ctxL, ggml_permute(ctxL, ggml_reshape_3d(ctxL, Vcur, n_state/n_head, n_head, n_ctx), 0, 2, 1, 3), ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_ctx, n_head) ); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); #endif struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, n_ctx)); } // projection { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } #ifdef USE_FLASH_FF cur = ggml_flash_ff(ctxL, ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); #else // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); #endif } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = nullptr; inpL->src1 = nullptr; //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); // cur = ln_f_g*cur + ln_f_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.e_ln_w, cur), cur), ggml_repeat(ctx0, model.e_ln_b, cur)); } // run the computation { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); //ggml_graph_print(&gf); } // cur //{ // printf("ne0 = %d\n", cur->ne[0]); // printf("ne1 = %d\n", cur->ne[1]); // for (int i = 0; i < 10; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("... "); // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("\n"); //} // pre-compute cross-attention memory { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; // TODO: hack to disconnect the encoded features from the previous graph cur->op = GGML_OP_NONE; cur->src0 = nullptr; cur->src1 = nullptr; for (int il = 0; il < model.hparams.n_text_layer; ++il) { auto & layer = model.layers_decoder[il]; struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, layer.cross_attn_k_w, cur); Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, layer.cross_attn_v_w, cur); Vcross = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_v_b, Vcross), Vcross); //struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx)); //struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx)); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); } ggml_graph_compute(ctx0, &gf); } //////////////////////////////////////////////////////////////////////////// //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); ggml_free(ctx0); return true; } // evaluate the decoder // // given text prompt + audio features -> predicts the probabilities for the next token // // - model: the model // - n_threads: number of threads to use // - tokens: text prompt // - n_tokens: number of tokens in the prompt // - n_past: number of past tokens to prefix the prompt with // static bool whisper_decode( whisper_context & wctx, const int n_threads, const whisper_token * tokens, const int n_tokens, const int n_past) { const auto & model = wctx.model; const auto & hparams = model.hparams; auto & logits_out = wctx.logits; auto & probs_out = wctx.probs; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_text_ctx; const int n_state = hparams.n_text_state; const int n_head = hparams.n_text_head; const int n_layer = hparams.n_text_layer; const int N = n_tokens; const int M = wctx.exp_n_audio_ctx > 0 ? wctx.exp_n_audio_ctx : hparams.n_audio_ctx; struct ggml_init_params params; params.mem_size = wctx.buf_compute.size(); params.mem_buffer = wctx.buf_compute.data(); struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); for (int i = 0; i < N; ++i) { ((int32_t *) position->data)[i] = n_past + i; } // token encoding + position encoding struct ggml_tensor * cur = ggml_add(ctx0, ggml_get_rows(ctx0, model.d_te, embd), ggml_get_rows(ctx0, model.d_pe, position)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_decoder[il]; struct ggml_init_params paramsL; paramsL.mem_size = wctx.buf_compute_layer.size(); paramsL.mem_buffer = wctx.buf_compute_layer.data(); struct ggml_context * ctxL = ggml_init(paramsL); struct ggml_cgraph gf = {}; gf.n_threads = n_threads; // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); } // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), n_state/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); struct ggml_tensor * V_trans = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), n_state/n_head, n_head, n_past + N), 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); // norm { cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); } // cross-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.cross_attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // Kcross is already scaled struct ggml_tensor * Kcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), n_state/n_head, n_head, M); struct ggml_tensor * Vcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), n_state/n_head, n_head, M); // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); // no masking for cross-attention //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_state, N) cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } // projection { cur = ggml_mul_mat(ctxL, layer.cross_attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpCA); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = nullptr; inpL->src1 = nullptr; if (N > 1) { //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); } ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.d_ln_w, cur), cur), ggml_repeat(ctx0, model.d_ln_b, cur)); } struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); // logits -> probs cur = ggml_dup(ctx0, logits); cur = ggml_soft_max(ctx0, cur); // in-place // run the computation { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); } logits_out.resize(N*n_vocab); memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); probs_out.resize(N*n_vocab); memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); if (N > 1) { //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); } ggml_free(ctx0); return true; } // the most basic sampling scheme - select the top token static whisper_token_data whisper_sample_best( whisper_vocab & vocab, const float * probs, bool force_timestamp, bool is_initial) { whisper_token_data result = { 0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f, }; const int n_logits = vocab.n_vocab; auto & probs_id = vocab.probs_id; probs_id.clear(); for (int i = 0; i < n_logits; i++) { probs_id.emplace_back(probs[i], i); } { double sum_ts = 0.0; double max_ts = -1.0; double max_tx = -1.0; for (int i = 0; i < vocab.token_beg; i++) { max_tx = std::max(max_tx, probs_id[i].first); } const auto i0 = is_initial ? vocab.token_beg + 101 : vocab.token_beg; const auto i1 = is_initial ? vocab.token_beg + 101 : n_logits; // the initial timestamp cannot be larger than 100 // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L426-L429 if (is_initial) { for (int i = i0; i < n_logits; ++ i) { probs_id[i].first = -INFINITY; } } for (int i = vocab.token_beg; i < i1; i++) { sum_ts += probs_id[i].first; if (probs_id[i].first > max_ts) { max_ts = probs_id[i].first; result.tid = probs_id[i].second; } } // if the probability sum of all timestamp tokens is higher than the max probability of the text tokens - sample a // timestamp token if (sum_ts > max_tx || force_timestamp) { // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438 for (int i = 0; i < vocab.token_beg; i++) { probs_id[i].first = -INFINITY; } } result.pt = max_ts/(sum_ts + 1e-10); result.ptsum = sum_ts; } // find the top K tokens const int top_k = 4; std::partial_sort( probs_id.begin(), probs_id.begin() + top_k, probs_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); probs_id.resize(top_k); //printf("\n"); //for (int i = 0; i < (int) probs_id.size(); i++) { // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); //} int res = 0; while ((probs_id[res].second == vocab.token_sot || probs_id[res].second == vocab.token_solm || probs_id[res].second == vocab.token_not) && res < (int) probs_id.size() - 1) { res++; } result.id = probs_id[res].second; result.p = probs_id[res].first; return result; } // 500 -> 00:05.000 // 6000 -> 01:00.000 static std::string to_timestamp(int64_t t, bool comma = false) { int64_t msec = t * 10; int64_t hr = msec / (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60); int64_t min = msec / (1000 * 60); msec = msec - min * (1000 * 60); int64_t sec = msec / 1000; msec = msec - sec * 1000; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); return std::string(buf); } // naive Discrete Fourier Transform // input is real-valued // output is complex-valued static void dft(const std::vector & in, std::vector & out) { int N = in.size(); out.resize(N*2); for (int k = 0; k < N; k++) { float re = 0; float im = 0; for (int n = 0; n < N; n++) { float angle = 2*M_PI*k*n/N; re += in[n]*cos(angle); im -= in[n]*sin(angle); } out[k*2 + 0] = re; out[k*2 + 1] = im; } } // Cooley-Tukey FFT // poor man's implementation - use something better // input is real-valued // output is complex-valued static void fft(const std::vector & in, std::vector & out) { out.resize(in.size()*2); int N = in.size(); if (N == 1) { out[0] = in[0]; out[1] = 0; return; } if (N%2 == 1) { dft(in, out); return; } std::vector even; std::vector odd; even.reserve(N/2); odd.reserve(N/2); for (int i = 0; i < N; i++) { if (i % 2 == 0) { even.push_back(in[i]); } else { odd.push_back(in[i]); } } std::vector even_fft; std::vector odd_fft; fft(even, even_fft); fft(odd, odd_fft); for (int k = 0; k < N/2; k++) { float theta = 2*M_PI*k/N; float re = cos(theta); float im = -sin(theta); float re_odd = odd_fft[2*k + 0]; float im_odd = odd_fft[2*k + 1]; out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; } } // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 static bool log_mel_spectrogram( const float * samples, const int n_samples, const int /*sample_rate*/, const int fft_size, const int fft_step, const int n_mel, const int n_threads, const whisper_filters & filters, const bool speed_up, whisper_mel & mel) { // Hanning window std::vector hann; hann.resize(fft_size); for (int i = 0; i < fft_size; i++) { hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); } mel.n_mel = n_mel; mel.n_len = (n_samples)/fft_step; mel.data.resize(mel.n_mel*mel.n_len); const int n_fft = 1 + (speed_up ? fft_size/4 : fft_size/2); //printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len); //printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate); std::vector workers(n_threads); for (int iw = 0; iw < n_threads; ++iw) { workers[iw] = std::thread([&](int ith) { std::vector fft_in; fft_in.resize(fft_size); for (int i = 0; i < fft_size; i++) { fft_in[i] = 0.0; } std::vector fft_out; fft_out.resize(2*fft_size); for (int i = ith; i < mel.n_len; i += n_threads) { const int offset = i*fft_step; // apply Hanning window for (int j = 0; j < fft_size; j++) { if (offset + j < n_samples) { fft_in[j] = hann[j]*samples[offset + j]; } else { fft_in[j] = 0.0; } } // FFT -> mag^2 fft(fft_in, fft_out); for (int j = 0; j < fft_size; j++) { fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); } for (int j = 1; j < fft_size/2; j++) { //if (i == 0) { // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]); //} fft_out[j] += fft_out[fft_size - j]; } if (i == 0) { //for (int j = 0; j < fft_size; j++) { // printf("%d: %e\n", j, fft_out[j]); //} } if (speed_up) { // scale down in the frequency domain results in a speed up in the time domain for (int j = 0; j < n_fft; j++) { fft_out[j] = 0.5*(fft_out[2*j] + fft_out[2*j + 1]); } } // mel spectrogram for (int j = 0; j < mel.n_mel; j++) { double sum = 0.0; for (int k = 0; k < n_fft; k++) { sum += fft_out[k]*filters.data[j*n_fft + k]; } if (sum < 1e-10) { sum = 1e-10; } sum = log10(sum); mel.data[j*mel.n_len + i] = sum; } } }, iw); } for (int iw = 0; iw < n_threads; ++iw) { workers[iw].join(); } // clamping and normalization double mmax = -1e20; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] > mmax) { mmax = mel.data[i]; } } //printf("%s: max = %f\n", __func__, mmax); mmax -= 8.0; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] < mmax) { mel.data[i] = mmax; } mel.data[i] = (mel.data[i] + 4.0)/4.0; } return true; } // split text into tokens // // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 // // Regex (Python): // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" // // Regex (C++): // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" // static std::vector tokenize(const whisper_vocab & vocab, const std::string & text) { std::vector words; // first split the text into words { std::string str = text; std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; std::regex re(pat); std::smatch m; while (std::regex_search(str, m, re)) { for (auto x : m) { words.push_back(x); } str = m.suffix(); } } // find the longest tokens that form the words: std::vector tokens; for (const auto & word : words) { if (word.empty()) continue; int i = 0; int n = word.size(); while (i < n) { int j = n; while (j > i) { auto it = vocab.token_to_id.find(word.substr(i, j-i)); if (it != vocab.token_to_id.end()) { tokens.push_back(it->second); i = j; break; } --j; } if (i == n) { break; } if (j == i) { auto sub = word.substr(i, 1); if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) { tokens.push_back(vocab.token_to_id.at(sub)); } else { fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data()); } ++i; } } } return tokens; } // // interface implementation // struct whisper_context * whisper_init(const char * path_model) { ggml_time_init(); whisper_context * ctx = new whisper_context; const int64_t t_start_us = ggml_time_us(); ctx->t_start_us = t_start_us; if (!whisper_model_load(path_model, *ctx)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); delete ctx; return nullptr; } ctx->t_load_us = ggml_time_us() - t_start_us; return ctx; } void whisper_free(struct whisper_context * ctx) { if (ctx) { if (ctx->model.ctx) { ggml_free(ctx->model.ctx); } if (ctx->model.ctx_mem) { ggml_free(ctx->model.ctx_mem); } if (ctx->buf_model) { delete ctx->buf_model; } delete ctx; } } int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, ctx->mel)) { fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__); return -1; } ctx->t_mel_us = ggml_time_us() - t_start_us; return 0; } // same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 int whisper_pcm_to_mel_phase_vocoder(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, 2*WHISPER_N_FFT, 2*WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, true, ctx->mel)) { fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__); return -1; } ctx->t_mel_us = ggml_time_us() - t_start_us; return 0; } int whisper_set_mel( struct whisper_context * ctx, const float * data, int n_len, int n_mel) { if (n_mel != WHISPER_N_MEL) { fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL); return -1; } ctx->mel.n_len = n_len; ctx->mel.n_mel = n_mel; ctx->mel.data.resize(n_len*n_mel); memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float)); return 0; } int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!whisper_encode(*ctx, n_threads, offset)) { fprintf(stderr, "%s: failed to eval\n", __func__); return -1; } ctx->t_encode_us += ggml_time_us() - t_start_us; return 0; } int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } ctx->t_decode_us += ggml_time_us() - t_start_us; return 0; } struct whisper_token_data whisper_sample_best(struct whisper_context * ctx) { const int64_t t_start_sample_us = ggml_time_us(); const auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), false, false); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; return res; } struct whisper_token_data whisper_sample_timestamp(struct whisper_context * ctx, bool is_initial) { const int64_t t_start_sample_us = ggml_time_us(); const auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), true, is_initial); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; return res; } int whisper_tokenize(struct whisper_context * ctx, const char * text, whisper_token * tokens, int n_max_tokens) { const auto res = tokenize(ctx->vocab, text); if (n_max_tokens < (int) res.size()) { fprintf(stderr, "%s: too many resulting tokens: %d (max %d)\n", __func__, (int) res.size(), n_max_tokens); return -1; } for (int i = 0; i < (int) res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int whisper_lang_max_id() { auto max_id = 0; for (const auto & kv : g_lang) { max_id = std::max(max_id, kv.second.first); } return max_id; } int whisper_lang_id(const char * lang) { if (!g_lang.count(lang)) { for (const auto & kv : g_lang) { if (kv.second.second == lang) { return kv.second.first; } } fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang); return -1; } return g_lang.at(lang).first; } const char * whisper_lang_str(int id) { for (const auto & kv : g_lang) { if (kv.second.first == id) { return kv.first.c_str(); } } fprintf(stderr, "%s: unknown language id %d\n", __func__, id); return nullptr; } int whisper_lang_auto_detect( struct whisper_context * ctx, int offset_ms, int n_threads, float * lang_probs) { const int seek = offset_ms/10; if (seek < 0) { fprintf(stderr, "%s: offset %dms is before the start of the audio\n", __func__, offset_ms); return -1; } if (seek >= ctx->mel.n_len) { fprintf(stderr, "%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, ctx->mel.n_len*10); return -2; } // run the encoder if (whisper_encode(ctx, seek, n_threads) != 0) { fprintf(stderr, "%s: failed to encode\n", __func__); return -6; } const std::vector prompt = { whisper_token_sot(ctx) }; if (whisper_decode(ctx, prompt.data(), prompt.size(), 0, n_threads) != 0) { fprintf(stderr, "%s: failed to decode\n", __func__); return -7; } std::vector> probs_id; for (const auto & kv : g_lang) { const auto token_lang = whisper_token_lang(ctx, kv.second.first); probs_id.emplace_back(ctx->probs[token_lang], kv.second.first); } // sort descending { using pair_type = decltype(probs_id)::value_type; std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) { return a.first > b.first; }); } // softmax { float sum = 0; for (const auto & kv : probs_id) { sum += exp(kv.first); } for (auto & kv : probs_id) { kv.first = exp(kv.first) / sum; } } { for (int i = 0; i < (int) probs_id.size(); i++) { if (lang_probs) { lang_probs[probs_id[i].second] = probs_id[i].first; } //printf("%s: lang %2d (%3s): %f\n", __func__, probs_id[i].second, whisper_lang_str(probs_id[i].second), probs_id[i].first); } } return probs_id[0].second; } int whisper_n_len(struct whisper_context * ctx) { return ctx->mel.n_len; } int whisper_n_vocab(struct whisper_context * ctx) { return ctx->vocab.n_vocab; } int whisper_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_n_audio_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_ctx; } int whisper_is_multilingual(struct whisper_context * ctx) { return ctx->vocab.is_multilingual() ? 1 : 0; } float * whisper_get_probs(struct whisper_context * ctx) { return ctx->probs.data(); } const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { return ctx->vocab.id_to_token.at(token).c_str(); } whisper_token whisper_token_eot(struct whisper_context * ctx) { return ctx->vocab.token_eot; } whisper_token whisper_token_sot(struct whisper_context * ctx) { return ctx->vocab.token_sot; } whisper_token whisper_token_prev(struct whisper_context * ctx) { return ctx->vocab.token_prev; } whisper_token whisper_token_solm(struct whisper_context * ctx) { return ctx->vocab.token_solm; } whisper_token whisper_token_not(struct whisper_context * ctx) { return ctx->vocab.token_not; } whisper_token whisper_token_beg(struct whisper_context * ctx) { return ctx->vocab.token_beg; } whisper_token whisper_token_lang(struct whisper_context * ctx, int lang_id) { return whisper_token_sot(ctx) + 1 + lang_id; } whisper_token whisper_token_translate(void) { return whisper_vocab::token_translate; } whisper_token whisper_token_transcribe(void) { return whisper_vocab::token_transcribe; } void whisper_print_timings(struct whisper_context * ctx) { const int64_t t_end_us = ggml_time_us(); fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f); fprintf(stderr, "%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f); fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f); fprintf(stderr, "%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer); fprintf(stderr, "%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); } void whisper_reset_timings(struct whisper_context * ctx) { ctx->t_sample_us = 0; ctx->t_encode_us = 0; ctx->t_decode_us = 0; } const char * whisper_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; return s.c_str(); } //////////////////////////////////////////////////////////////////////////// struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) { struct whisper_full_params result; switch (strategy) { case WHISPER_SAMPLING_GREEDY: { result = { /*.strategy =*/ WHISPER_SAMPLING_GREEDY, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, /*.duration_ms =*/ 0, /*.translate =*/ false, /*.no_context =*/ false, /*.single_segment =*/ false, /*.print_special =*/ false, /*.print_progress =*/ true, /*.print_realtime =*/ false, /*.print_timestamps =*/ true, /*.token_timestamps =*/ false, /*.thold_pt =*/ 0.01f, /*.thold_ptsum =*/ 0.01f, /*.max_len =*/ 0, /*.max_tokens =*/ 0, /*.speed_up =*/ false, /*.audio_ctx =*/ 0, /*.prompt_tokens =*/ nullptr, /*.prompt_n_tokens =*/ 0, /*.language =*/ "en", /*.greedy =*/ { /*.n_past =*/ 0, }, /*.beam_search =*/ { /*.n_past =*/ -1, /*.beam_width =*/ -1, /*.n_best =*/ -1, }, /*.new_segment_callback =*/ nullptr, /*.new_segment_callback_user_data =*/ nullptr, /*.encoder_begin_callback =*/ nullptr, /*.encoder_begin_callback_user_data =*/ nullptr, }; } break; case WHISPER_SAMPLING_BEAM_SEARCH: { result = { /*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, /*.duration_ms =*/ 0, /*.translate =*/ false, /*.no_context =*/ false, /*.single_segment =*/ false, /*.print_special =*/ false, /*.print_progress =*/ true, /*.print_realtime =*/ false, /*.print_timestamps =*/ true, /*.token_timestamps =*/ false, /*.thold_pt =*/ 0.01f, /*.thold_ptsum =*/ 0.01f, /*.max_len =*/ 0, /*.max_tokens =*/ 0, /*.speed_up =*/ false, /*.audio_ctx =*/ 0, /*.prompt_tokens =*/ nullptr, /*.prompt_n_tokens =*/ 0, /*.language =*/ "en", /*.greedy =*/ { /*.n_past =*/ -1, }, /*.beam_search =*/ { /*.n_past =*/ 0, /*.beam_width =*/ 10, /*.n_best =*/ 5, }, /*.new_segment_callback =*/ nullptr, /*.new_segment_callback_user_data =*/ nullptr, /*.encoder_begin_callback =*/ nullptr, /*.encoder_begin_callback_user_data =*/ nullptr, }; } break; } return result; } // forward declarations static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window); static void whisper_exp_compute_token_level_timestamps( struct whisper_context * ctx, int i_segment, float thold_pt, float thold_ptsum); // wrap the last segment to max_len characters // returns the number of new segments static int whisper_wrap_segment(struct whisper_context * ctx, int max_len) { auto segment = ctx->result_all.back(); int res = 1; int acc = 0; std::string text; for (int i = 0; i < (int) segment.tokens.size(); i++) { const auto & token = segment.tokens[i]; if (token.id >= whisper_token_eot(ctx)) { continue; } const auto txt = whisper_token_to_str(ctx, token.id); const int cur = strlen(txt); if (acc + cur > max_len && i > 0) { // split here ctx->result_all.back().text = std::move(text); ctx->result_all.back().t1 = token.t0; ctx->result_all.back().tokens.resize(i); ctx->result_all.push_back({}); ctx->result_all.back().t0 = token.t0; ctx->result_all.back().t1 = segment.t1; // add tokens [i, end] to the new segment ctx->result_all.back().tokens.insert( ctx->result_all.back().tokens.end(), segment.tokens.begin() + i, segment.tokens.end()); acc = 0; text = ""; segment = ctx->result_all.back(); i = -1; res++; } else { acc += cur; text += txt; } } ctx->result_all.back().text = std::move(text); return res; } int whisper_full( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples) { // clear old results auto & result_all = ctx->result_all; result_all.clear(); // compute log mel spectrogram if (params.speed_up) { if (whisper_pcm_to_mel_phase_vocoder(ctx, samples, n_samples, params.n_threads) != 0) { fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__); return -1; } } else { if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) { fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__); return -2; } } // auto-detect language if not specified if (params.language == nullptr || strlen(params.language) == 0 || strcmp(params.language, "auto") == 0) { std::vector probs(whisper_lang_max_id() + 1, 0.0f); const auto lang_id = whisper_lang_auto_detect(ctx, 0, params.n_threads, probs.data()); if (lang_id < 0) { fprintf(stderr, "%s: failed to auto-detect language\n", __func__); return -3; } params.language = whisper_lang_str(lang_id); fprintf(stderr, "%s: auto-detected language: %s (p = %f)\n", __func__, params.language, probs[whisper_lang_id(params.language)]); } if (params.token_timestamps) { ctx->t_beg = 0; ctx->t_last = 0; ctx->tid_last = 0; ctx->energy = get_signal_energy(samples, n_samples, 32); } const int seek_start = params.offset_ms/10; const int seek_end = seek_start + (params.duration_ms == 0 ? whisper_n_len(ctx) : params.duration_ms/10); // if length of spectrogram is less than 1s (100 samples), then return // basically don't process anything that is less than 1s // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39 if (seek_end < 100 + seek_start) { return 0; } // the accumulated text context so far auto & prompt_past = ctx->prompt_past; if (params.no_context) { prompt_past.clear(); } // prepend the prompt tokens to the prompt_past if (params.prompt_tokens && params.prompt_n_tokens > 0) { // parse tokens from the pointer for (int i = 0; i < params.prompt_n_tokens; i++) { prompt_past.push_back(params.prompt_tokens[i]); } std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end()); } // overwrite audio_ctx, max allowed is hparams.n_audio_ctx if (params.audio_ctx > whisper_n_audio_ctx(ctx)) { fprintf(stderr, "%s: audio_ctx is larger than the maximum allowed (%d > %d)\n", __func__, params.audio_ctx, whisper_n_audio_ctx(ctx)); return -4; } ctx->exp_n_audio_ctx = params.audio_ctx; // these tokens determine the task that will be performed std::vector prompt_init = { whisper_token_sot(ctx) }; if (whisper_is_multilingual(ctx)) { const int lang_id = whisper_lang_id(params.language); prompt_init.push_back(whisper_token_lang(ctx, lang_id)); if (params.translate) { prompt_init.push_back(whisper_token_translate()); } else { prompt_init.push_back(whisper_token_transcribe()); } } int progress_prev = 0; int progress_step = 5; std::vector tokens_cur; tokens_cur.reserve(whisper_n_text_ctx(ctx)); std::vector prompt; prompt.reserve(whisper_n_text_ctx(ctx)); // main loop int seek = seek_start; while (true) { const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start); while (progress_cur >= progress_prev + progress_step) { progress_prev += progress_step; if (params.print_progress) { fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress_prev); } } // of only 1 second left, then stop if (seek + 100 >= seek_end) { break; } // if there is a very short audio segment left to process, we remove any past prompt since it tends // to confuse the decoder and often make it repeat or hallucinate stuff if (seek > seek_start && seek + 500 >= seek_end) { prompt_past.clear(); } if (params.encoder_begin_callback) { if (params.encoder_begin_callback(ctx, params.encoder_begin_callback_user_data) == false) { fprintf(stderr, "%s: encoder_begin_callback returned false - aborting\n", __func__); break; } } // encode audio features starting at offset seek if (whisper_encode(ctx, seek, params.n_threads) != 0) { fprintf(stderr, "%s: failed to encode\n", __func__); return -4; } int n_past = 0; prompt.clear(); // if we have already generated some text, use it as a prompt to condition the next generation if (!prompt_past.empty()) { int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size())); prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt_past.clear(); prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end()); } prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); int seek_delta = 100*WHISPER_CHUNK_SIZE; // print the prompt //printf("\n\n"); //for (int i = 0; i < prompt.size(); i++) { // printf("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token[prompt[i]].c_str()); //} //printf("\n\n"); // the accumulated transcription in the current interation int result_len = 0; tokens_cur.clear(); bool failed = false; bool has_ts = false; // have we already sampled a non-beg timestamp token for the current segment? for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) { if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { fprintf(stderr, "%s: failed to decode\n", __func__); return -5; } n_past += prompt.size(); prompt.clear(); // very basic greedy sampling strategy: // // - always take the most probable token // // more sophisticated sampling strategies could be implemented here, but we keep it simple // feel free to experiment! // { const auto token = (i == 0) ? whisper_sample_timestamp(ctx, true) : whisper_sample_best(ctx); // timestamp token - update sliding window if (token.id > whisper_token_beg(ctx)) { const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx)); // do not allow to go back in time if (has_ts && seek_delta > seek_delta_new && result_len < i) { break; } seek_delta = seek_delta_new; result_len = i + 1; has_ts = true; } // add it to the context prompt.push_back(token.id); tokens_cur.push_back(token); //{ // const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token[token.tid] : "[?]"; // printf("%s: %3d %10s %6d %6.3f '%s'\n", __func__, i, tt.c_str(), token.id, token.pt, ctx->vocab.id_to_token[token.id].c_str()); //} // end of segment if (token.id == whisper_token_eot(ctx) || // end of text token (params.max_tokens > 0 && i >= params.max_tokens) || // max tokens per segment reached (has_ts && seek + seek_delta + 100 >= seek_end) // end of audio reached ) { if (result_len == 0) { if (seek + seek_delta + 100 >= seek_end) { result_len = i + 1; } else { failed = true; break; } } if (params.single_segment) { result_len = i + 1; seek_delta = 100*WHISPER_CHUNK_SIZE; } break; } // TESTS: if no tensors are loaded, it means we are running tests if (ctx->model.n_loaded == 0) { seek_delta = 100*WHISPER_CHUNK_SIZE; break; } } // sometimes, the decoding can get stuck in a repetition loop // this is a simple strategy to avoid such cases - we simply flag the decoding as failed and advance // the sliding window by 1 second if (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) { failed = true; break; } } if (failed) { // when we fail to sample timestamp token, retry by clearing the past prompt // if it fails again, then we advance the window by 1 second if (!prompt_past.empty()) { prompt_past.clear(); } else { fprintf(stderr, "\n%s: failed to generate timestamp token - skipping one second\n\n", __func__); seek += 100; } continue; } // shrink down to result_len tokens_cur.resize(result_len); for (const auto & r : tokens_cur) { prompt_past.push_back(r.id); } // store the text from this iteration if (!tokens_cur.empty()) { int i0 = 0; auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx)); std::string text; for (int i = 0; i < (int) tokens_cur.size(); i++) { //printf("%s: %18s %6.3f %18s %6.3f\n", __func__, // ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p, // ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt); if (params.print_special == false && tokens_cur[i].id >= whisper_token_eot(ctx)) { } else { text += whisper_token_to_str(ctx, tokens_cur[i].id); } if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) { const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx)); if (!text.empty()) { const auto tt0 = params.speed_up ? 2*t0 : t0; const auto tt1 = params.speed_up ? 2*t1 : t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ tt0, tt1, text, {} }); for (int j = i0; j <= i; j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(ctx, params.max_len); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data); } } text = ""; while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) { i++; } i--; t0 = t1; i0 = i + 1; } } if (!text.empty()) { const auto t1 = seek + seek_delta; const auto tt0 = params.speed_up ? 2*t0 : t0; const auto tt1 = params.speed_up ? 2*t1 : t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ tt0, tt1, text, {} }); for (int j = i0; j < (int) tokens_cur.size(); j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(ctx, params.max_len); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data); } } } seek += seek_delta; } return 0; } int whisper_full_parallel( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples, int n_processors) { if (n_processors == 1) { return whisper_full(ctx, params, samples, n_samples); } int ret = 0; // prepare separate contexts for each thread std::vector ctxs(n_processors - 1); for (int i = 0; i < n_processors - 1; ++i) { ctxs[i] = *ctx; auto & model = ctxs[i].model; // create the ggml memory context { struct ggml_init_params params; params.mem_size = ctxs[i].buf_memory.size(); params.mem_buffer = ctxs[i].buf_memory.data(); model.ctx_mem = ggml_init(params); if (!model.ctx_mem) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // separate key + value memory for each processor { auto & ctx = model.ctx_mem; const auto & hparams = model.hparams; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_text_ctx = hparams.n_text_ctx; // key/value memory for the self-attention layer { const int n_mem = n_text_layer*n_text_ctx; const int n_elements = n_text_state*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } // key/value memory for the cross-attention layer { const int n_audio_ctx = hparams.n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx; const int n_elements = n_text_state*n_mem; model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } } } const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000; const int n_samples_per_processor = (n_samples - offset_samples)/n_processors; // the calling thread will process the first chunk // while the other threads will process the remaining chunks std::vector workers(n_processors - 1); for (int i = 0; i < n_processors - 1; ++i) { const int start_samples = offset_samples + (i + 1)*n_samples_per_processor; const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor; auto params_cur = params; params_cur.offset_ms = 0; params_cur.print_progress = false; params_cur.print_realtime = false; params_cur.new_segment_callback = nullptr; params_cur.new_segment_callback_user_data = nullptr; workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur); } { auto params_cur = params; ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor); } for (int i = 0; i < n_processors - 1; ++i) { workers[i].join(); } const int64_t offset_t = (int64_t) params.offset_ms/10.0; // combine results into ctx->result_all for (int i = 0; i < n_processors - 1; ++i) { auto & results_i = ctxs[i].result_all; for (int j = 0; j < (int) results_i.size(); ++j) { // correct the segment timestamp taking into account the offset results_i[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; results_i[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; // make sure that segments are not overlapping if (!ctx->result_all.empty()) { results_i[j].t0 = std::max(results_i[j].t0, ctx->result_all.back().t1); } ctx->result_all.push_back(std::move(results_i[j])); // call the new_segment_callback for each segment if (params.new_segment_callback) { params.new_segment_callback(ctx, 1, params.new_segment_callback_user_data); } } ctx->t_mel_us += ctxs[i].t_mel_us; ctx->t_sample_us += ctxs[i].t_sample_us; ctx->t_encode_us += ctxs[i].t_encode_us; ctx->t_decode_us += ctxs[i].t_decode_us; } // average the timings ctx->t_mel_us /= n_processors; ctx->t_sample_us /= n_processors; ctx->t_encode_us /= n_processors; ctx->t_decode_us /= n_processors; // print information about the audio boundaries fprintf(stderr, "\n"); fprintf(stderr, "%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors); for (int i = 0; i < n_processors - 1; ++i) { fprintf(stderr, "%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str()); } fprintf(stderr, "%s: the transcription quality may be degraded near these boundaries\n", __func__); return ret; } int whisper_full_n_segments(struct whisper_context * ctx) { return ctx->result_all.size(); } int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].t1; } const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].text.c_str(); } int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].tokens.size(); } const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->vocab.id_to_token[ctx->result_all[i_segment].tokens[i_token].id].c_str(); } whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->result_all[i_segment].tokens[i_token].id; } struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->result_all[i_segment].tokens[i_token]; } float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->result_all[i_segment].tokens[i_token].p; } // ================================================================================================= // // Experimental stuff below // // Not sure if these should be part of the library at all, because the quality of the results is not // guaranteed. Might get removed at some point unless a robust algorithm implementation is found // // ================================================================================================= // // token-level timestamps // static int timestamp_to_sample(int64_t t, int n_samples) { return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100))); } static int64_t sample_to_timestamp(int i_sample) { return (100*i_sample)/WHISPER_SAMPLE_RATE; } // a cost-function / heuristic that is high for text that takes longer to pronounce // obviously, can be improved static float voice_length(const std::string & text) { float res = 0.0f; for (size_t i = 0; i < text.size(); ++i) { if (text[i] == ' ') { res += 0.01f; } else if (text[i] == ',') { res += 2.00f; } else if (text[i] == '.') { res += 3.00f; } else if (text[i] == '!') { res += 3.00f; } else if (text[i] == '?') { res += 3.00f; } else if (text[i] >= '0' && text[i] <= '9') { res += 3.00f; } else { res += 1.00f; } } return res; } // average the fabs of the signal static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) { const int hw = n_samples_per_half_window; std::vector result(n_samples); for (int i = 0; i < n_samples; i++) { float sum = 0; for (int j = -hw; j <= hw; j++) { if (i + j >= 0 && i + j < n_samples) { sum += fabs(signal[i + j]); } } result[i] = sum/(2*hw + 1); } return result; } static void whisper_exp_compute_token_level_timestamps( struct whisper_context * ctx, int i_segment, float thold_pt, float thold_ptsum) { auto & segment = ctx->result_all[i_segment]; auto & tokens = segment.tokens; const int n_samples = ctx->energy.size(); if (n_samples == 0) { fprintf(stderr, "%s: no signal data available\n", __func__); return; } const int64_t t0 = segment.t0; const int64_t t1 = segment.t1; const int n = tokens.size(); if (n == 0) { return; } if (n == 1) { tokens[0].t0 = t0; tokens[0].t1 = t1; return; } auto & t_beg = ctx->t_beg; auto & t_last = ctx->t_last; auto & tid_last = ctx->tid_last; for (int j = 0; j < n; ++j) { auto & token = tokens[j]; if (j == 0) { if (token.id == whisper_token_beg(ctx)) { tokens[j ].t0 = t0; tokens[j ].t1 = t0; tokens[j + 1].t0 = t0; t_beg = t0; t_last = t0; tid_last = whisper_token_beg(ctx); } else { tokens[j ].t0 = t_last; } } const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx)); tokens[j].id = token.id; tokens[j].tid = token.tid; tokens[j].p = token.p; tokens[j].pt = token.pt; tokens[j].ptsum = token.ptsum; tokens[j].vlen = voice_length(whisper_token_to_str(ctx, token.id)); if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) { if (j > 0) { tokens[j - 1].t1 = tt; } tokens[j].t0 = tt; tid_last = token.tid; } } tokens[n - 2].t1 = t1; tokens[n - 1].t0 = t1; tokens[n - 1].t1 = t1; t_last = t1; // find intervals of tokens with unknown timestamps // fill the timestamps by proportionally splitting the interval based on the token voice lengths { int p0 = 0; int p1 = 0; while (true) { while (p1 < n && tokens[p1].t1 < 0) { p1++; } if (p1 >= n) { p1--; } if (p1 > p0) { double psum = 0.0; for (int j = p0; j <= p1; j++) { psum += tokens[j].vlen; } //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum); const double dt = tokens[p1].t1 - tokens[p0].t0; // split the time proportionally to the voice length for (int j = p0 + 1; j <= p1; j++) { const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum; tokens[j - 1].t1 = ct; tokens[j ].t0 = ct; } } p1++; p0 = p1; if (p1 >= n) { break; } } } // fix up (just in case) for (int j = 0; j < n - 1; j++) { if (tokens[j].t1 < 0) { tokens[j + 1].t0 = tokens[j].t1; } if (j > 0) { if (tokens[j - 1].t1 > tokens[j].t0) { tokens[j].t0 = tokens[j - 1].t1; tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1); } } } // VAD // expand or contract tokens based on voice activity { const int hw = WHISPER_SAMPLE_RATE/8; for (int j = 0; j < n; j++) { if (tokens[j].id >= whisper_token_eot(ctx)) { continue; } int s0 = timestamp_to_sample(tokens[j].t0, n_samples); int s1 = timestamp_to_sample(tokens[j].t1, n_samples); const int ss0 = std::max(s0 - hw, 0); const int ss1 = std::min(s1 + hw, n_samples); const int ns = ss1 - ss0; float sum = 0.0f; for (int k = ss0; k < ss1; k++) { sum += ctx->energy[k]; } const float thold = 0.5*sum/ns; { int k = s0; if (ctx->energy[k] > thold && j > 0) { while (k > 0 && ctx->energy[k] > thold) { k--; } tokens[j].t0 = sample_to_timestamp(k); if (tokens[j].t0 < tokens[j - 1].t1) { tokens[j].t0 = tokens[j - 1].t1; } else { s0 = k; } } else { while (ctx->energy[k] < thold && k < s1) { k++; } s0 = k; tokens[j].t0 = sample_to_timestamp(k); } } { int k = s1; if (ctx->energy[k] > thold) { while (k < n_samples - 1 && ctx->energy[k] > thold) { k++; } tokens[j].t1 = sample_to_timestamp(k); if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) { tokens[j].t1 = tokens[j + 1].t0; } else { s1 = k; } } else { while (ctx->energy[k] < thold && k > s0) { k--; } s1 = k; tokens[j].t1 = sample_to_timestamp(k); } } } } // fixed token expand (optional) //{ // const int t_expand = 0; // for (int j = 0; j < n; j++) { // if (j > 0) { // tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand)); // } // if (j < n - 1) { // tokens[j].t1 = tokens[j].t1 + t_expand; // } // } //} // debug info //for (int j = 0; j < n; ++j) { // const auto & token = tokens[j]; // const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]"; // printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__, // tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(ctx, token.id)); // if (tokens[j].id >= whisper_token_eot(ctx)) { // continue; // } //} }