#include "whisper.h" #include "ggml.h" #include #include #include #include #include #include #include #include #include #include #define USE_FLASH_ATTN #define USE_FLASH_FF // available whisper models enum e_model { MODEL_UNKNOWN, MODEL_TINY, MODEL_BASE, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, }; static const std::map> g_lang = { { "en", { 0, "english", } }, { "zh", { 1, "chinese", } }, { "de", { 2, "german", } }, { "es", { 3, "spanish", } }, { "ru", { 4, "russian", } }, { "ko", { 5, "korean", } }, { "fr", { 6, "french", } }, { "ja", { 7, "japanese", } }, { "pt", { 8, "portuguese", } }, { "tr", { 9, "turkish", } }, { "pl", { 10, "polish", } }, { "ca", { 11, "catalan", } }, { "nl", { 12, "dutch", } }, { "ar", { 13, "arabic", } }, { "sv", { 14, "swedish", } }, { "it", { 15, "italian", } }, { "id", { 16, "indonesian", } }, { "hi", { 17, "hindi", } }, { "fi", { 18, "finnish", } }, { "vi", { 19, "vietnamese", } }, { "iw", { 20, "hebrew", } }, { "uk", { 21, "ukrainian", } }, { "el", { 22, "greek", } }, { "ms", { 23, "malay", } }, { "cs", { 24, "czech", } }, { "ro", { 25, "romanian", } }, { "da", { 26, "danish", } }, { "hu", { 27, "hungarian", } }, { "ta", { 28, "tamil", } }, { "no", { 29, "norwegian", } }, { "th", { 30, "thai", } }, { "ur", { 31, "urdu", } }, { "hr", { 32, "croatian", } }, { "bg", { 33, "bulgarian", } }, { "lt", { 34, "lithuanian", } }, { "la", { 35, "latin", } }, { "mi", { 36, "maori", } }, { "ml", { 37, "malayalam", } }, { "cy", { 38, "welsh", } }, { "sk", { 39, "slovak", } }, { "te", { 40, "telugu", } }, { "fa", { 41, "persian", } }, { "lv", { 42, "latvian", } }, { "bn", { 43, "bengali", } }, { "sr", { 44, "serbian", } }, { "az", { 45, "azerbaijani", } }, { "sl", { 46, "slovenian", } }, { "kn", { 47, "kannada", } }, { "et", { 48, "estonian", } }, { "mk", { 49, "macedonian", } }, { "br", { 50, "breton", } }, { "eu", { 51, "basque", } }, { "is", { 52, "icelandic", } }, { "hy", { 53, "armenian", } }, { "ne", { 54, "nepali", } }, { "mn", { 55, "mongolian", } }, { "bs", { 56, "bosnian", } }, { "kk", { 57, "kazakh", } }, { "sq", { 58, "albanian", } }, { "sw", { 59, "swahili", } }, { "gl", { 60, "galician", } }, { "mr", { 61, "marathi", } }, { "pa", { 62, "punjabi", } }, { "si", { 63, "sinhala", } }, { "km", { 64, "khmer", } }, { "sn", { 65, "shona", } }, { "yo", { 66, "yoruba", } }, { "so", { 67, "somali", } }, { "af", { 68, "afrikaans", } }, { "oc", { 69, "occitan", } }, { "ka", { 70, "georgian", } }, { "be", { 71, "belarusian", } }, { "tg", { 72, "tajik", } }, { "sd", { 73, "sindhi", } }, { "gu", { 74, "gujarati", } }, { "am", { 75, "amharic", } }, { "yi", { 76, "yiddish", } }, { "lo", { 77, "lao", } }, { "uz", { 78, "uzbek", } }, { "fo", { 79, "faroese", } }, { "ht", { 80, "haitian creole", } }, { "ps", { 81, "pashto", } }, { "tk", { 82, "turkmen", } }, { "nn", { 83, "nynorsk", } }, { "mt", { 84, "maltese", } }, { "sa", { 85, "sanskrit", } }, { "lb", { 86, "luxembourgish", } }, { "my", { 87, "myanmar", } }, { "bo", { 88, "tibetan", } }, { "tl", { 89, "tagalog", } }, { "mg", { 90, "malagasy", } }, { "as", { 91, "assamese", } }, { "tt", { 92, "tatar", } }, { "haw", { 93, "hawaiian", } }, { "ln", { 94, "lingala", } }, { "ha", { 95, "hausa", } }, { "ba", { 96, "bashkir", } }, { "jw", { 97, "javanese", } }, { "su", { 98, "sundanese", } }, }; static const size_t MB = 1024*1024; static const std::map MEM_REQ_MODEL = { { MODEL_TINY, 86ull*MB }, { MODEL_BASE, 165ull*MB }, { MODEL_SMALL, 540ull*MB }, { MODEL_MEDIUM, 1650ull*MB }, { MODEL_LARGE, 3260ull*MB }, }; static const std::map MEM_REQ_ENCODE = { { MODEL_TINY, 80ull*MB }, { MODEL_BASE, 128ull*MB }, { MODEL_SMALL, 300ull*MB }, { MODEL_MEDIUM, 680ull*MB }, { MODEL_LARGE, 1100ull*MB }, }; static const std::map MEM_REQ_ENCODE_LAYER = { { MODEL_TINY, 64ull*MB }, { MODEL_BASE, 84ull*MB }, { MODEL_SMALL, 128ull*MB }, { MODEL_MEDIUM, 172ull*MB }, { MODEL_LARGE, 216ull*MB }, }; static const std::map MEM_REQ_DECODE = { { MODEL_TINY, 94ull*MB }, { MODEL_BASE, 96ull*MB }, { MODEL_SMALL, 98ull*MB }, { MODEL_MEDIUM, 100ull*MB }, { MODEL_LARGE, 102ull*MB }, }; static const std::map MEM_REQ_DECODE_LAYER = { { MODEL_TINY, 32ull*MB }, { MODEL_BASE, 44ull*MB }, { MODEL_SMALL, 64ull*MB }, { MODEL_MEDIUM, 84ull*MB }, { MODEL_LARGE, 110ull*MB }, }; struct whisper_mel { int n_len; int n_mel; std::vector data; }; struct whisper_filters { int32_t n_mel; int32_t n_fft; std::vector data; }; struct whisper_vocab { using id = int32_t; using token = std::string; int n_vocab = 51864; std::map token_to_id; std::map id_to_token; id token_eot = 50256; id token_sot = 50257; id token_prev = 50360; id token_solm = 50361; // ?? id token_not = 50362; // no timestamps id token_beg = 50363; // available tasks static const id token_translate = 50358; static const id token_transcribe = 50359; bool is_multilingual() const { return n_vocab == 51865; } }; struct whisper_result { int64_t t; whisper_token id; }; struct whisper_segment { int64_t t0; int64_t t1; std::string text; }; // medium // hparams: { // 'n_mels': 80, // 'n_vocab': 51864, // 'n_audio_ctx': 1500, // 'n_audio_state': 1024, // 'n_audio_head': 16, // 'n_audio_layer': 24, // 'n_text_ctx': 448, // 'n_text_state': 1024, // 'n_text_head': 16, // 'n_text_layer': 24 // } // // default hparams (Whisper tiny) struct whisper_hparams { int32_t n_vocab = 51864; int32_t n_audio_ctx = 1500; int32_t n_audio_state = 384; int32_t n_audio_head = 6; int32_t n_audio_layer = 4; int32_t n_text_ctx = 448; int32_t n_text_state = 384; int32_t n_text_head = 6; int32_t n_text_layer = 4; int32_t n_mels = 80; int32_t f16 = 1; }; // audio encoding layer struct whisper_layer_encoder { // encoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // encoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // encoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // encoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // encoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // encoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // encoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // encoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; // token decoding layer struct whisper_layer_decoder { // decoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // decoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // decoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // decoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // decoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // decoder.blocks.*.cross_attn_ln struct ggml_tensor * cross_attn_ln_0_w; struct ggml_tensor * cross_attn_ln_0_b; // decoder.blocks.*.cross_attn.out struct ggml_tensor * cross_attn_ln_1_w; struct ggml_tensor * cross_attn_ln_1_b; // decoder.blocks.*.cross_attn.query struct ggml_tensor * cross_attn_q_w; struct ggml_tensor * cross_attn_q_b; // decoder.blocks.*.cross_attn.key struct ggml_tensor * cross_attn_k_w; // decoder.blocks.*.cross_attn.value struct ggml_tensor * cross_attn_v_w; struct ggml_tensor * cross_attn_v_b; // decoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // decoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // decoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; struct whisper_model { e_model type = MODEL_UNKNOWN; whisper_hparams hparams; whisper_filters filters; // encoder.positional_embedding struct ggml_tensor * e_pe; // encoder.conv1 struct ggml_tensor * e_conv_1_w; struct ggml_tensor * e_conv_1_b; // encoder.conv2 struct ggml_tensor * e_conv_2_w; struct ggml_tensor * e_conv_2_b; // encoder.ln_post struct ggml_tensor * e_ln_w; struct ggml_tensor * e_ln_b; // decoder.positional_embedding struct ggml_tensor * d_pe; // DD // decoder.token_embedding struct ggml_tensor * d_te; // DD // decoder.ln struct ggml_tensor * d_ln_w; // DD struct ggml_tensor * d_ln_b; // DD std::vector layers_encoder; std::vector layers_decoder; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; struct ggml_tensor * memory_cross_k; struct ggml_tensor * memory_cross_v; // struct ggml_context * ctx; std::map tensors; }; struct whisper_context { int64_t t_load_us = 0; int64_t t_mel_us = 0; int64_t t_sample_us = 0; int64_t t_encode_us = 0; int64_t t_decode_us = 0; int64_t t_start_us = 0; std::vector buf_model; std::vector buf_compute; std::vector buf_compute_layer; whisper_model model; whisper_vocab vocab; whisper_mel mel; std::vector probs; std::vector logits; std::vector result_cur; std::vector result_all; }; // load the model from a ggml file // // file format: // // - hparams // - pre-computed mel filters // - vocab // - weights // // see the convert-pt-to-ggml.py script for details // bool whisper_model_load(const std::string & fname, whisper_context & wctx) { printf("%s: loading model from '%s'\n", __func__, fname.c_str()); auto & model = wctx.model; auto & vocab = wctx.vocab; auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } //load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); fin.read((char *) &hparams.f16, sizeof(hparams.f16)); assert(hparams.n_text_state == hparams.n_audio_state); if (hparams.n_audio_layer == 4) { model.type = e_model::MODEL_TINY; } if (hparams.n_audio_layer == 6) { model.type = e_model::MODEL_BASE; } if (hparams.n_audio_layer == 12) { model.type = e_model::MODEL_SMALL; } if (hparams.n_audio_layer == 24) { model.type = e_model::MODEL_MEDIUM; } if (hparams.n_audio_layer == 32) { model.type = e_model::MODEL_LARGE; } printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); printf("%s: n_mels = %d\n", __func__, hparams.n_mels); printf("%s: f16 = %d\n", __func__, hparams.f16); printf("%s: type = %d\n", __func__, model.type); wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type)); wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); // this is the total memory required to run the inference const size_t mem_required = wctx.buf_model.size() + wctx.buf_compute.size() + wctx.buf_compute_layer.size(); printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); } // load mel filters { auto & filters = wctx.model.filters; fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); filters.data.resize(filters.n_mel * filters.n_fft); fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); //if (n_vocab != model.hparams.n_vocab) { // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); // return false; //} std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); word.resize(len); fin.read((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); } vocab.n_vocab = model.hparams.n_vocab; if (vocab.is_multilingual()) { vocab.token_eot++; vocab.token_sot++; vocab.token_prev++; vocab.token_solm++; vocab.token_not++; vocab.token_beg++; } if (n_vocab < model.hparams.n_vocab) { printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); for (int i = n_vocab; i < model.hparams.n_vocab; i++) { if (i > vocab.token_beg) { word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; } else if (i == vocab.token_eot) { word = "[_EOT_]"; } else if (i == vocab.token_sot) { word = "[_SOT_]"; } else if (i == vocab.token_prev) { word = "[_PREV_]"; } else if (i == vocab.token_not) { word = "[_NOT_]"; } else if (i == vocab.token_beg) { word = "[_BEG_]"; } else { word = "[_extra_token_" + std::to_string(i) + "]"; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } } // for the big tensors, we have the option to store the data in 16-bit floats // in order to save memory and also to speed up the computation const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; // encoder { // TODO: F16 .. maybe not? ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; } // decoder { // TODO: F16 .. maybe not? ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; } // encoder layers { ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b } // decoder layers { ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b // ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b } ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { .mem_size = wctx.buf_model.size(), .mem_buffer = wctx.buf_model.data(), }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { auto & ctx = model.ctx; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; model.layers_encoder.resize(n_audio_layer); model.layers_decoder.resize(n_text_layer); // encoder { model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.positional_embedding"] = model.e_pe; model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; model.tensors["encoder.ln_post.weight"] = model.e_ln_w; model.tensors["encoder.ln_post.bias"] = model.e_ln_b; for (int i = 0; i < n_audio_layer; ++i) { auto & layer = model.layers_encoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; } } // decoder { model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.positional_embedding"] = model.d_pe; model.tensors["decoder.token_embedding.weight"] = model.d_te; model.tensors["decoder.ln.weight"] = model.d_ln_w; model.tensors["decoder.ln.bias"] = model.d_ln_b; for (int i = 0; i < n_text_layer; ++i) { auto & layer = model.layers_decoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; } } } // key + value memory { auto & ctx = model.ctx; const auto & hparams = model.hparams; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_text_ctx = hparams.n_text_ctx; // key/value memory for the self-attention layer { const int n_mem = n_text_layer*n_text_ctx; const int n_elements = n_text_state*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } // key/value memory for the cross-attention layer { const int n_audio_ctx = hparams.n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx; const int n_elements = n_text_state*n_mem; model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); } const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); } // load weights { size_t total_size = 0; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[3] = { 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); return false; } const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); if (nelements*bpe != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); } printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); } fin.close(); return true; } // evaluate the encoder // // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder // part of the transformer model and returns the encoded features // // - model: the model // - n_threads: number of threads to use // - mel_offset: offset in the mel spectrogram (i.e. audio offset) // - mel_inp: input mel spectrogram // - features: output encoded features // bool whisper_encode( whisper_context & wctx, const int n_threads, const int mel_offset) { const auto & model = wctx.model; const auto & mel_inp = wctx.mel; const auto & hparams = model.hparams; const int n_ctx = hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_layer = hparams.n_audio_layer; const int N = n_ctx; const int n_mels = hparams.n_mels; assert(mel_inp.n_mel == n_mels); struct ggml_init_params params = { .mem_size = wctx.buf_compute.size(), .mem_buffer = wctx.buf_compute.data(), }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); assert(mel->type == GGML_TYPE_F32); { float * dst = (float *) mel->data; memset(dst, 0, ggml_nbytes(mel)); const int i0 = std::min(mel_offset, mel_inp.n_len); const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); for (int j = 0; j < mel_inp.n_mel; ++j) { for (int i = i0; i < i1; ++i) { dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; } } } struct ggml_tensor * cur; // convolution + gelu { cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_1_b, cur), cur); cur = ggml_gelu(ctx0, cur); cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_2_b, cur), cur); cur = ggml_gelu(ctx0, cur); } cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_encoder[il]; // create separate context for each layer to reduce memory usage struct ggml_init_params paramsL = { .mem_size = wctx.buf_compute_layer.size(), .mem_buffer = wctx.buf_compute_layer.data(), }; struct ggml_context * ctxL = ggml_init(paramsL); // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // ------ #ifdef USE_FLASH_ATTN struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_cpy(ctxL, Kcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * V = ggml_cpy(ctxL, ggml_permute(ctxL, ggml_reshape_3d(ctxL, Vcur, n_state/n_head, n_head, N), 1, 2, 0, 3), ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) ); struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); #else struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_cpy(ctxL, Kcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); struct ggml_tensor * KQ_scaled = ggml_scale(ctxL, KQ, ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) ); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); //struct ggml_tensor * V_trans = // ggml_permute(ctxL, // ggml_cpy(ctxL, // Vcur, // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // 1, 2, 0, 3); //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * V = ggml_cpy(ctxL, ggml_permute(ctxL, ggml_reshape_3d(ctxL, Vcur, n_state/n_head, n_head, N), 0, 2, 1, 3), ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) ); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); #endif struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } // projection { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } #ifdef USE_FLASH_FF cur = ggml_flash_ff(ctxL, ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); #else // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); #endif } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = NULL; inpL->src1 = NULL; //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); // cur = ln_f_g*cur + ln_f_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.e_ln_w, cur), cur), ggml_repeat(ctx0, model.e_ln_b, cur)); } // run the computation { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); //ggml_graph_print(&gf); } // cur //{ // printf("ne0 = %d\n", cur->ne[0]); // printf("ne1 = %d\n", cur->ne[1]); // for (int i = 0; i < 10; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("... "); // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("\n"); //} // pre-compute cross-attention memory { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; // TODO: hack to disconnect the encoded features from the previous graph cur->op = GGML_OP_NONE; cur->src0 = NULL; cur->src1 = NULL; for (int il = 0; il < model.hparams.n_text_layer; ++il) { auto & layer = model.layers_decoder[il]; struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, layer.cross_attn_k_w, cur); Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, layer.cross_attn_v_w, cur); Vcross = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_v_b, Vcross), Vcross); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); } ggml_graph_compute(ctx0, &gf); } //////////////////////////////////////////////////////////////////////////// //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); ggml_free(ctx0); return true; } // evaluate the decoder // // given text prompt + audio features -> predicts the probabilities for the next token // // - model: the model // - n_threads: number of threads to use // - n_past: prompt length // - prompt: text prompt // - logits_out: output logits // - probs_out: output probabilities // bool whisper_decode( whisper_context & wctx, const int n_threads, const whisper_token * tokens, const int n_tokens, const int n_past) { const auto & model = wctx.model; const auto & hparams = model.hparams; auto & logits_out = wctx.logits; auto & probs_out = wctx.probs; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_text_ctx; const int n_state = hparams.n_text_state; const int n_head = hparams.n_text_head; const int n_layer = hparams.n_text_layer; const int N = n_tokens; const int M = hparams.n_audio_ctx; struct ggml_init_params params = { .mem_size = wctx.buf_compute.size(), .mem_buffer = wctx.buf_compute.data(), }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); for (int i = 0; i < N; ++i) { ((int32_t *) position->data)[i] = n_past + i; } // token encoding + position encoding struct ggml_tensor * cur = ggml_add(ctx0, ggml_get_rows(ctx0, model.d_te, embd), ggml_get_rows(ctx0, model.d_pe, position)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_decoder[il]; struct ggml_init_params paramsL = { .mem_size = wctx.buf_compute_layer.size(), .mem_buffer = wctx.buf_compute_layer.data(), }; struct ggml_context * ctxL = ggml_init(paramsL); struct ggml_cgraph gf = {}; gf.n_threads = n_threads; // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); } // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), n_state/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); struct ggml_tensor * V_trans = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), n_state/n_head, n_head, n_past + N), 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); // norm { cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); } // cross-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.cross_attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // Kcross is already scaled struct ggml_tensor * Kcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), n_state/n_head, n_head, M); struct ggml_tensor * Vcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), n_state/n_head, n_head, M); // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); // no masking for cross-attention //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_state, N) cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } // projection { cur = ggml_mul_mat(ctxL, layer.cross_attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpCA); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = NULL; inpL->src1 = NULL; if (N > 1) { //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); } ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.d_ln_w, cur), cur), ggml_repeat(ctx0, model.d_ln_b, cur)); } struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); // logits -> probs cur = ggml_dup(ctx0, logits); cur = ggml_soft_max(ctx0, cur); // in-place // run the computation { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); } logits_out.resize(N*n_vocab); memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); probs_out.resize(N*n_vocab); memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); if (N > 1) { //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); } ggml_free(ctx0); return true; } // the most basic sampling scheme - select the top token // TODO: beam search // TODO: temperature whisper_vocab::id whisper_sample_best( const whisper_vocab & vocab, const float * probs, bool need_timestamp) { int n_logits = vocab.id_to_token.size(); std::vector> probs_id; probs_id.reserve(n_logits); for (int i = 0; i < n_logits; i++) { probs_id.push_back(std::make_pair(probs[i], i)); } const int top_k = 4; // find the top K tokens std::partial_sort( probs_id.begin(), probs_id.begin() + top_k, probs_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); probs_id.resize(top_k); //printf("\n"); //for (int i = 0; i < (int) probs_id.size(); i++) { // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); //} if (need_timestamp) { // at the end of the 30-second audio segment, we start giving preference to time tokens for (int i = 0; i < top_k; i++) { if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) { return probs_id[i].second; } } } int res = 0; while ((probs_id[res].second == vocab.token_sot || probs_id[res].second == vocab.token_solm || probs_id[res].second == vocab.token_not) && res < (int) probs_id.size() - 1) { res++; } return probs_id[res].second; } // samples only from the timestamps tokens whisper_vocab::id whisper_sample_timestamp( const whisper_vocab & vocab, const float * probs) { int n_logits = vocab.id_to_token.size(); std::vector> probs_id; probs_id.reserve(n_logits); for (int i = vocab.token_beg + 1; i < n_logits; i++) { probs_id.push_back(std::make_pair(probs[i], i)); } const int top_k = 10; // find the top K tokens std::partial_sort( probs_id.begin(), probs_id.begin() + top_k, probs_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); probs_id.resize(top_k); //printf("\n"); //for (int i = 0; i < (int) probs_id.size(); i++) { // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); //} return probs_id[0].second; } static std::string to_timestamp(int64_t t) { int64_t sec = t/100; int64_t msec = t - sec*100; int64_t min = sec/60; sec = sec - min*60; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); return std::string(buf); } // naive Discrete Fourier Transform // input is real-valued // output is complex-valued void dft(const std::vector & in, std::vector & out) { int N = in.size(); out.resize(N*2); for (int k = 0; k < N; k++) { float re = 0; float im = 0; for (int n = 0; n < N; n++) { float angle = 2*M_PI*k*n/N; re += in[n]*cos(angle); im -= in[n]*sin(angle); } out[k*2 + 0] = re; out[k*2 + 1] = im; } } // Cooley-Tukey FFT // poor man's implementation - use something better // input is real-valued // output is complex-valued void fft(const std::vector & in, std::vector & out) { out.resize(in.size()*2); int N = in.size(); if (N == 1) { out[0] = in[0]; out[1] = 0; return; } if (N%2 == 1) { dft(in, out); return; } std::vector even; std::vector odd; for (int i = 0; i < N; i++) { if (i % 2 == 0) { even.push_back(in[i]); } else { odd.push_back(in[i]); } } std::vector even_fft; std::vector odd_fft; fft(even, even_fft); fft(odd, odd_fft); for (int k = 0; k < N/2; k++) { float theta = 2*M_PI*k/N; float re = cos(theta); float im = -sin(theta); float re_odd = odd_fft[2*k + 0]; float im_odd = odd_fft[2*k + 1]; out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; } } // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 bool log_mel_spectrogram( const float * samples, const int n_samples, const int sample_rate, const int fft_size, const int fft_step, const int n_mel, const int n_threads, const whisper_filters & filters, whisper_mel & mel) { // Hanning window std::vector hann; hann.resize(fft_size); for (int i = 0; i < fft_size; i++) { hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); } mel.n_mel = n_mel; mel.n_len = (n_samples)/fft_step; mel.data.resize(mel.n_mel*mel.n_len); const int n_fft = 1 + fft_size/2; //printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len); //printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate); std::vector workers(n_threads); for (int iw = 0; iw < n_threads; ++iw) { workers[iw] = std::thread([&](int ith) { std::vector fft_in; fft_in.resize(fft_size); for (int i = 0; i < fft_size; i++) { fft_in[i] = 0.0; } std::vector fft_out; fft_out.resize(2*fft_size); for (int i = ith; i < mel.n_len; i += n_threads) { const int offset = i*fft_step; // apply Hanning window for (int j = 0; j < fft_size; j++) { if (offset + j < n_samples) { fft_in[j] = hann[j]*samples[offset + j]; } else { fft_in[j] = 0.0; } } // FFT -> mag^2 fft(fft_in, fft_out); for (int j = 0; j < fft_size; j++) { fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); } for (int j = 1; j < fft_size/2; j++) { //if (i == 0) { // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]); //} fft_out[j] += fft_out[fft_size - j]; } if (i == 0) { //for (int j = 0; j < fft_size; j++) { // printf("%d: %e\n", j, fft_out[j]); //} } // mel spectrogram for (int j = 0; j < mel.n_mel; j++) { double sum = 0.0; for (int k = 0; k < n_fft; k++) { sum += fft_out[k]*filters.data[j*n_fft + k]; } if (sum < 1e-10) { sum = 1e-10; } sum = log10(sum); mel.data[j*mel.n_len + i] = sum; } } }, iw); } for (int iw = 0; iw < n_threads; ++iw) { workers[iw].join(); } // clamping and normalization double mmax = -1e20; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] > mmax) { mmax = mel.data[i]; } } //printf("%s: max = %f\n", __func__, mmax); mmax -= 8.0; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] < mmax) { mel.data[i] = mmax; } mel.data[i] = (mel.data[i] + 4.0)/4.0; } return true; } // // interface implementation // struct whisper_context * whisper_init(const char * path_model) { whisper_context * ctx = new whisper_context; const int64_t t_start_us = ggml_time_us(); ctx->t_start_us = t_start_us; if (!whisper_model_load(path_model, *ctx)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); return NULL; } ctx->t_load_us = ggml_time_us() - t_start_us; return ctx; } void whisper_free(struct whisper_context * ctx) { if (ctx) { delete ctx; } } int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) { fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__); return -1; } ctx->t_mel_us = ggml_time_us() - t_start_us; return 0; } int whisper_set_mel( struct whisper_context * ctx, const float * data, int n_len, int n_mel) { if (n_mel != WHISPER_N_MEL) { fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL); return -1; } ctx->mel.n_len = n_len; ctx->mel.n_mel = n_mel; ctx->mel.data.resize(n_len*n_mel); memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float)); return 0; } int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!whisper_encode(*ctx, n_threads, offset)) { fprintf(stderr, "%s: failed to eval\n", __func__); return -1; } ctx->t_encode_us += ggml_time_us() - t_start_us; return 0; } int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { const int64_t t_start_us = ggml_time_us(); if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } ctx->t_decode_us += ggml_time_us() - t_start_us; return 0; } whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp) { const int64_t t_start_sample_us = ggml_time_us(); // TODO: simplify auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), need_timestamp); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; return res; } whisper_token whisper_sample_timestamp(struct whisper_context * ctx) { const int64_t t_start_sample_us = ggml_time_us(); // TODO: simplify auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab)); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; return res; } int whisper_lang_id(const char * lang) { if (!g_lang.count(lang)) { fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang); return -1; } return g_lang.at(lang).first; } int whisper_n_len(struct whisper_context * ctx) { return ctx->mel.n_len; } int whisper_n_vocab(struct whisper_context * ctx) { return ctx->vocab.n_vocab; } int whisper_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_is_multilingual(struct whisper_context * ctx) { return ctx->vocab.is_multilingual() ? 1 : 0; } float * whisper_get_probs(struct whisper_context * ctx) { return ctx->probs.data(); } const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { return ctx->vocab.id_to_token.at(token).c_str(); } whisper_token whisper_token_eot(struct whisper_context * ctx) { return ctx->vocab.token_eot; } whisper_token whisper_token_sot(struct whisper_context * ctx) { return ctx->vocab.token_sot; } whisper_token whisper_token_prev(struct whisper_context * ctx) { return ctx->vocab.token_prev; } whisper_token whisper_token_solm(struct whisper_context * ctx) { return ctx->vocab.token_solm; } whisper_token whisper_token_not(struct whisper_context * ctx) { return ctx->vocab.token_not; } whisper_token whisper_token_beg(struct whisper_context * ctx) { return ctx->vocab.token_beg; } whisper_token whisper_token_translate() { return whisper_vocab::token_translate; } whisper_token whisper_token_transcribe() { return whisper_vocab::token_transcribe; } void whisper_print_timings(struct whisper_context * ctx) { const int64_t t_end_us = ggml_time_us(); printf("\n\n"); printf("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f); printf("%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f); printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer); printf("%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer); printf("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); } //////////////////////////////////////////////////////////////////////////// struct whisper_full_params whisper_full_default_params(enum whisper_decode_strategy strategy) { struct whisper_full_params result; switch (strategy) { case WHISPER_DECODE_GREEDY: { result = (struct whisper_full_params) { .strategy = WHISPER_DECODE_GREEDY, .n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()), .translate = false, .print_special_tokens = false, .print_progress = true, .print_realtime = false, .print_timestamps = true, .language = "en", .greedy = { .n_past = 0, }, }; } break; case WHISPER_DECODE_BEAM_SEARCH: { result = (struct whisper_full_params) { .strategy = WHISPER_DECODE_GREEDY, .n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()), .translate = false, .print_special_tokens = false, .print_progress = true, .print_realtime = false, .print_timestamps = true, .language = "en", .beam_search = { .n_past = 0, .beam_width = 10, .n_best = 5, }, }; } break; } return result; } int whisper_full( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples) { // compute log mel spectrogram if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) { fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__); return -1; } // the accumulated text context so far std::vector prompt_past = { }; // these tokens determine the task that will be performed std::vector prompt_init = { whisper_token_sot(ctx) }; if (whisper_is_multilingual(ctx)) { prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language)); if (params.translate) { prompt_init.push_back(whisper_token_translate()); } else { prompt_init.push_back(whisper_token_transcribe()); } } auto & result_all = ctx->result_all; auto & result_cur = ctx->result_cur; result_all.clear(); int progress_prev = 0; int progress_step = 5; // main loop int seek = 0; while (true) { int progress_cur = (100*seek)/whisper_n_len(ctx); while (progress_cur >= progress_prev + progress_step) { progress_prev += progress_step; if (params.print_progress) { printf("%s: progress = %3d%%\n", __func__, progress_prev); } } if (seek + 100 >= whisper_n_len(ctx)) { break; } // encode audio features starting at offset seek if (whisper_encode(ctx, seek, params.n_threads) != 0) { fprintf(stderr, "%s: failed to encode\n", __func__); return 7; } std::vector prompt; int n_past = 0; // if we have already generated some text, use it as a prompt to condition the next generation if (prompt_past.size() > 0) { int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size())); prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt_past.clear(); prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end()); } prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); bool done = false; int seek_delta = 100*WHISPER_CHUNK_SIZE; // print the prompt //printf("\n\n"); //for (int i = 0; i < prompt.size(); i++) { // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str()); //} //printf("\n\n"); // the accumulated transcription in the current interation int result_len = 0; result_cur.clear(); for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { fprintf(stderr, "%s: failed to decode\n", __func__); return 8; } n_past += prompt.size(); prompt.clear(); // very basic greedy sampling strategy: // // - always take the most probable token // // more sophisticated sampling strategies could be implemented here, but we keep it simple // feel free to experiment! // { whisper_token id = 0; whisper_token tid = whisper_token_beg(ctx); id = whisper_sample_best(ctx, result_len == 0); if (i > 0) { tid = whisper_sample_timestamp(ctx); } // update sliding window if (id > whisper_token_beg(ctx)) { seek_delta = 2*(id - whisper_token_beg(ctx)); result_len = i + 1; } // add it to the context prompt.push_back(id); result_cur.push_back({ seek + 2*(tid - whisper_token_beg(ctx)), id }); //printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str()); // end of text token if (id == whisper_token_eot(ctx)) { if (result_len == 0) { result_len = i + 1; } break; } } if (done) { break; } } result_cur.resize(result_len); for (const auto & r : result_cur) { prompt_past.push_back(r.id); } // store the text from this iteration if (result_cur.size() > 0) { auto t0 = result_cur.front().t; std::string text = ""; for (int i = 0; i < (int) result_cur.size(); i++) { if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) { } else { text += whisper_token_to_str(ctx, result_cur[i].id); } if (result_cur[i].id > whisper_token_beg(ctx)) { const auto t1 = result_cur[i].t; if (!text.empty()) { if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ t0, t1, text }); } text = ""; while (result_cur[i].id > whisper_token_beg(ctx) && i < (int) result_cur.size()) { i++; } i--; t0 = result_cur[i].t; } } if (!text.empty()) { const auto t1 = seek + seek_delta; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ t0, t1, text }); } } seek += seek_delta; } return 0; } int whisper_full_n_segments(struct whisper_context * ctx) { return ctx->result_all.size(); } int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].t1; } const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { return ctx->result_all[i_segment].text.c_str(); }