#include "ggml/ggml.h" #include "utils.h" #include #include #include #include #include #include #include #include #include // TODO: move somewhere else #define QK 32 // default hparams (GPT-2 117M) struct gpt2_hparams { int32_t n_vocab = 50257; int32_t n_ctx = 1024; int32_t n_embd = 768; int32_t n_head = 12; int32_t n_layer = 12; int32_t f16 = 1; }; // quantize a model bool gpt2_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) { ggml_type type = GGML_TYPE_Q4_1; switch (itype) { case 2: type = GGML_TYPE_Q4_0; break; case 3: type = GGML_TYPE_Q4_1; break; default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1; }; if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) { fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type); return false; } gpt_vocab vocab; printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str()); auto finp = std::ifstream(fname_inp, std::ios::binary); if (!finp) { fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str()); return false; } auto fout = std::ofstream(fname_out, std::ios::binary); if (!fout) { fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str()); return false; } // verify magic { uint32_t magic; finp.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str()); return false; } fout.write((char *) &magic, sizeof(magic)); } gpt2_hparams hparams; // load hparams { finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); finp.read((char *) &hparams.n_head, sizeof(hparams.n_head)); finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); finp.read((char *) &hparams.f16, sizeof(hparams.f16)); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: f16 = %d\n", __func__, hparams.f16); fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fout.write((char *) &hparams.n_head, sizeof(hparams.n_head)); fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fout.write((char *) &itype, sizeof(hparams.f16)); } // load vocab { int32_t n_vocab = 0; finp.read ((char *) &n_vocab, sizeof(n_vocab)); fout.write((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab); return false; } std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; finp.read ((char *) &len, sizeof(len)); fout.write((char *) &len, sizeof(len)); word.resize(len); finp.read ((char *) word.data(), len); fout.write((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // load weights { size_t total_size_org = 0; size_t total_size_new = 0; std::vector work; std::vector data_u8; std::vector data_f16; std::vector data_f32; std::vector hist_all(1 << 4, 0); while (true) { int32_t n_dims; int32_t length; int32_t ftype; finp.read(reinterpret_cast(&n_dims), sizeof(n_dims)); finp.read(reinterpret_cast(&length), sizeof(length)); finp.read(reinterpret_cast(&ftype), sizeof(ftype)); if (finp.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { finp.read (reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); finp.read (&name[0], length); { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; printf("%24s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]); } // regexes of tensor names to be quantized const std::vector k_names = { "model/wte", "model/h.*/attn/c_attn/w", "model/h.*/attn/c_proj/w", "model/h.*/mlp/c_fc/w", "model/h.*/mlp/c_proj/w", }; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } if (quantize) { if (ftype != 0 && ftype != 1) { fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype); return false; } if (ftype == 1) { data_f16.resize(nelements); finp.read(reinterpret_cast(data_f16.data()), nelements * sizeof(ggml_fp16_t)); data_f32.resize(nelements); for (int i = 0; i < nelements; ++i) { data_f32[i] = ggml_fp16_to_fp32(data_f16[i]); } } else { data_f32.resize(nelements); finp.read(reinterpret_cast(data_f32.data()), nelements * sizeof(float)); } ftype = itype; } else { const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t); data_u8.resize(nelements*bpe); finp.read(reinterpret_cast(data_u8.data()), nelements * bpe); } fout.write(reinterpret_cast(&n_dims), sizeof(n_dims)); fout.write(reinterpret_cast(&length), sizeof(length)); fout.write(reinterpret_cast(&ftype), sizeof(ftype)); for (int i = 0; i < n_dims; ++i) { fout.write(reinterpret_cast(&ne[i]), sizeof(ne[i])); } fout.write(&name[0], length); if (quantize) { printf("quantizing .. "); work.resize(nelements); // for quantization size_t cur_size = 0; std::vector hist_cur(1 << 4, 0); switch (type) { case GGML_TYPE_Q4_0: { cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data()); } break; case GGML_TYPE_Q4_1: { cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data()); } break; default: { fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type); return false; } } fout.write(reinterpret_cast(work.data()), cur_size); total_size_new += cur_size; printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0); for (int i = 0; i < hist_cur.size(); ++i) { hist_all[i] += hist_cur[i]; } for (int i = 0; i < hist_cur.size(); ++i) { printf("%5.3f ", hist_cur[i] / (float)nelements); } printf("\n"); } else { printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0); fout.write(reinterpret_cast(data_u8.data()), data_u8.size()); total_size_new += data_u8.size(); } total_size_org += nelements * sizeof(float); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; for (int i = 0; i < hist_all.size(); ++i) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (int i = 0; i < hist_all.size(); ++i) { printf("%5.3f ", hist_all[i] / (float)sum_all); } printf("\n"); } } finp.close(); fout.close(); return true; } // usage: // ./gpt-2-quantize models/gpt-2-117M/ggml-model.bin models/gpt-2-117M/ggml-model-quant.bin type // int main(int argc, char ** argv) { if (argc != 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]); fprintf(stderr, " type = 2 - q4_0\n"); fprintf(stderr, " type = 3 - q4_1\n"); return 1; } const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; const int itype = atoi(argv[3]); const int64_t t_main_start_us = ggml_time_us(); int64_t t_quantize_us = 0; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gpt2_model_quantize(fname_inp, fname_out, itype)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } t_quantize_us = ggml_time_us() - t_start_us; } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n"); printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } return 0; }