llama : initial working FP16 + 4-bit Q4_0

llama
Georgi Gerganov 2 years ago
parent c2e9635c79
commit 7f32376b70
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

@ -4,3 +4,4 @@ target_include_directories(ggml_utils PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
add_subdirectory(gpt-2)
add_subdirectory(gpt-j)
add_subdirectory(whisper)
add_subdirectory(llama)

@ -0,0 +1,13 @@
#
# llama
set(TEST_TARGET llama)
add_executable(${TEST_TARGET} main.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
#
# llama-quantize
set(TEST_TARGET llama-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)

@ -73,18 +73,26 @@ fout.write(struct.pack("i", hparams["dim"]))
fout.write(struct.pack("i", hparams["multiple_of"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", 64)) # rot
fout.write(struct.pack("i", ftype))
# Is this correct??
for i in range(32000):
text = tokenizer.decode(i)
# TODO: this is probably wrong - not sure how this tokenizer works
text = tokenizer.decode([29889, i]).encode('utf-8')
# remove the first byte (it's always '.')
text = text[1:]
fout.write(struct.pack("i", len(text)))
fout.write(text.encode('utf-8'))
fout.write(text)
for k, v in model.items():
name = k
shape = v.shape
# skip layers.X.attention.inner_attention.rope.freqs
if name[-5:] == "freqs":
continue
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
#data = tf.train.load_variable(dir_model, name).squeeze()
@ -107,7 +115,7 @@ for k, v in model.items():
# default type is fp16
ftype_cur = 1
if ftype == 0:
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0

@ -0,0 +1,747 @@
#include "ggml/ggml.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
// default hparams (LLaMA 7B)
struct llama_hparams {
int32_t n_vocab = 32000;
int32_t n_ctx = 512; // this is provided as user input?
int32_t n_embd = 4096;
int32_t n_mult = 256;
int32_t n_head = 32;
int32_t n_layer = 32;
int32_t n_rot = 64;
int32_t f16 = 1;
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_model {
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// load the model's weights from a file
bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
int n_ff = 0;
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
hparams.n_ctx = n_ctx;
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: n_ff = %d\n", __func__, n_ff);
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
//if (i < 30000) {
// printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
//}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
const ggml_type wtype2 = GGML_TYPE_F32;
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (5 + 10*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
model.tensors["norm.weight"] = model.norm;
model.tensors["output.weight"] = model.output;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
// map by name
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return false;
}
if (0) {
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
size_t bpe = 0;
switch (ftype) {
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
return false;
}
};
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
fin.close();
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool llama_eval(
const llama_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
const int d_key = n_embd/n_head;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
.mem_size = buf_size,
.mem_buffer = buf,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = { .n_threads = n_threads };
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
// norm
{
cur = ggml_norm(ctx0, inpL);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
cur);
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
// store key and value to memory
if (N >= 1) {
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_rope(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
n_past, n_rot, 0),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
n_past, n_rot, 1),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V_trans =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
cur = ggml_norm(ctx0, inpFF);
// cur = ffn_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
cur);
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
// SILU activation
cur = ggml_silu(ctx0, cur);
cur = ggml_mul(ctx0, cur, tmp);
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
}
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = cur;
}
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = norm*inpL
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model.norm, inpL),
inpL);
}
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.output, inpL);
}
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
int main(int argc, char ** argv) {
const int64_t t_main_start_us = ggml_time_us();
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.seed < 0) {
params.seed = time(NULL);
}
printf("%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.prompt.empty()) {
params.prompt = gpt_random_prompt(rng);
}
int64_t t_load_us = 0;
gpt_vocab vocab;
llama_model model;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!llama_model_load(params.model, model, vocab, 512)) { // TODO: set context from user input ??
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
t_load_us = ggml_time_us() - t_start_us;
}
int n_past = 0;
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
std::vector<float> logits;
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
}
printf("\n\n");
std::vector<gpt_vocab::id> embd;
// determine the required inference memory per token:
size_t mem_per_token = 0;
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
// predict
if (embd.size() > 0) {
const int64_t t_start_us = ggml_time_us();
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
printf("Failed to predict\n");
return 1;
}
t_predict_us += ggml_time_us() - t_start_us;
}
n_past += embd.size();
embd.clear();
if (i >= embd_inp.size()) {
// sample next token
const int top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const int n_vocab = model.hparams.n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
// add it to the context
embd.push_back(id);
} else {
// if here, it means we are still processing the input prompt
for (int k = i; k < embd_inp.size(); k++) {
embd.push_back(embd_inp[k]);
if (embd.size() > params.n_batch) {
break;
}
}
i += embd.size() - 1;
}
// display text
for (auto id : embd) {
printf("%s", vocab.id_to_token[id].c_str());
}
fflush(stdout);
// end of text token
if (embd.back() == 50256) {
break;
}
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n\n");
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
ggml_free(model.ctx);
return 0;
}

@ -0,0 +1,330 @@
#include "ggml/ggml.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <regex>
// TODO: move somewhere else
#define QK 32
// default hparams (LLaMA76B)
struct llama_hparams {
int32_t n_vocab = 32000;
int32_t n_ctx = 512; // this is provided as user input?
int32_t n_embd = 4096;
int32_t n_mult = 256;
int32_t n_head = 32;
int32_t n_layer = 32;
int32_t n_rot = 64;
int32_t f16 = 1;
};
// quantize a model
bool llama_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
ggml_type type = GGML_TYPE_Q4_1;
switch (itype) {
case 2: type = GGML_TYPE_Q4_0; break;
case 3: type = GGML_TYPE_Q4_1; break;
default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
};
if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
return false;
}
gpt_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
auto finp = std::ifstream(fname_inp, std::ios::binary);
if (!finp) {
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
return false;
}
auto fout = std::ofstream(fname_out, std::ios::binary);
if (!fout) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
return false;
}
// verify magic
{
uint32_t magic;
finp.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
return false;
}
fout.write((char *) &magic, sizeof(magic));
}
llama_hparams hparams;
// load hparams
{
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fout.write((char *) &itype, sizeof(hparams.f16));
}
// load vocab
{
const int32_t n_vocab = hparams.n_vocab;
if (n_vocab != hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
finp.read ((char *) &len, sizeof(len));
fout.write((char *) &len, sizeof(len));
word.resize(len);
finp.read ((char *) word.data(), len);
fout.write((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// load weights
{
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<float> work;
std::vector<uint8_t> data_u8;
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (finp.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
finp.read (&name[0], length);
{
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
}
// regexes of tensor names to be quantized
const std::vector<std::string> k_names = {
".*weight",
};
bool quantize = false;
for (const auto & s : k_names) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// quantize only 2D tensors
quantize &= (n_dims == 2);
if (quantize) {
if (ftype != 0 && ftype != 1) {
fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
return false;
}
if (ftype == 1) {
data_f16.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
data_f32.resize(nelements);
for (int i = 0; i < nelements; ++i) {
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
}
} else {
data_f32.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
}
ftype = itype;
} else {
const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
data_u8.resize(nelements*bpe);
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
}
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
for (int i = 0; i < n_dims; ++i) {
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
fout.write(&name[0], length);
if (quantize) {
printf("quantizing .. ");
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch (type) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
} break;
default:
{
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
return false;
}
}
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / (float)nelements);
}
printf("\n");
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
total_size_new += data_u8.size();
}
total_size_org += nelements * sizeof(float);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
{
int64_t sum_all = 0;
for (int i = 0; i < hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
}
finp.close();
fout.close();
return true;
}
// usage:
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
//
int main(int argc, char ** argv) {
if (argc != 4) {
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
fprintf(stderr, " type = 2 - q4_0\n");
fprintf(stderr, " type = 3 - q4_1\n");
return 1;
}
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const int itype = atoi(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!llama_model_quantize(fname_inp, fname_out, itype)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = ggml_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
return 0;
}

@ -230,6 +230,38 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos) {
std::vector<gpt_vocab::id> res;
if (bos) {
res.push_back(1); // TODO: replace with vocab.bos
}
// find the longest token that matches the text
int pos = 0;
while (true) {
int l = 0;
int t = 0;
for (const auto & kv : vocab.id_to_token) {
if (kv.second.size() < l) continue;
if (kv.second.size() > text.size() - pos) continue;
if (text.substr(pos, kv.second.size()) == kv.second) {
l = kv.second.size();
t = kv.first;
}
}
if (l == 0) {
break;
}
res.push_back(t);
pos += l;
}
return res;
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());

@ -63,6 +63,10 @@ std::map<std::string, int32_t> json_parse(const std::string & fname);
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
// ref: https://github.com/google/sentencepiece
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);

@ -228,6 +228,7 @@ enum ggml_op {
GGML_OP_STEP,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_SILU,
GGML_OP_NORM, // normalize
GGML_OP_MUL_MAT,
@ -471,6 +472,10 @@ struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
struct ggml_tensor * ggml_norm(

@ -83,6 +83,7 @@ typedef void* thread_ret_t;
/*#define GGML_PERF*/
#define GGML_DEBUG 0
#define GGML_GELU_FP16
#define GGML_SILU_FP16
#define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2
@ -246,6 +247,9 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
// precomputed gelu table for f16 (128 KB)
static ggml_fp16_t table_gelu_f16[1 << 16];
// precomputed silu table for f16 (128 KB)
static ggml_fp16_t table_silu_f16[1 << 16];
// precomputed exp table for f16 (128 KB)
static ggml_fp16_t table_exp_f16[1 << 16];
@ -1741,6 +1745,35 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
}
#endif
// Sigmoid Linear Unit (SiLU) function
inline static float ggml_silu_f32(float x) {
return x/(1.0 + exp(-x));
}
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
y[i] = table_silu_f16[i16[i]];
}
}
#ifdef GGML_SILU_FP16
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
}
}
#else
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]);
}
}
#endif
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;
@ -1839,6 +1872,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"STEP",
"RELU",
"GELU",
"SILU",
"NORM",
"MUL_MAT",
@ -1860,7 +1894,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"FLASH_FF",
};
static_assert(GGML_OP_COUNT == 33, "GGML_OP_COUNT != 33");
static_assert(GGML_OP_COUNT == 34, "GGML_OP_COUNT != 34");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1881,6 +1915,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"step(x)",
"relu(x)",
"gelu(x)",
"silu(x)",
"norm(x)",
"X*Y",
@ -1902,7 +1937,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"flash_ff(x)",
};
static_assert(GGML_OP_COUNT == 33, "GGML_OP_COUNT != 33");
static_assert(GGML_OP_COUNT == 34, "GGML_OP_COUNT != 34");
//
// ggml object
@ -2144,7 +2179,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
static bool is_first_call = true;
if (is_first_call) {
// initialize GELU, EXP and F32 tables
// initialize GELU, SILU and EXP F32 tables
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
@ -2154,12 +2189,13 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
memcpy(&ii, &ui, sizeof(ii));
const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: GELU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
// initialize g_state
@ -3318,6 +3354,40 @@ struct ggml_tensor * ggml_gelu_inplace(
return ggml_gelu_impl(ctx, a, true);
}
// ggml_silu
struct ggml_tensor * ggml_silu_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SILU;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = NULL;
return result;
}
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_silu_impl(ctx, a, false);
}
struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_silu_impl(ctx, a, true);
}
// ggml_norm
struct ggml_tensor * ggml_norm_impl(
@ -4991,6 +5061,72 @@ static void ggml_compute_forward_gelu(
//printf("XXXXXXXX gelu\n");
}
// ggml_compute_forward_silu
static void ggml_compute_forward_silu_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_f32(params, src0, dst);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
@ -8183,6 +8319,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_gelu(params, tensor->src0, tensor);
} break;
case GGML_OP_SILU:
{
ggml_compute_forward_silu(params, tensor->src0, tensor);
} break;
case GGML_OP_NORM:
{
ggml_compute_forward_norm(params, tensor->src0, tensor);
@ -8421,6 +8561,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_SILU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
@ -8846,6 +8990,10 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
{
node->n_tasks = n_threads;
} break;
case GGML_OP_SILU:
{
node->n_tasks = n_threads;
} break;
case GGML_OP_NORM:
{
node->n_tasks = n_threads;

Loading…
Cancel
Save