gpt-j : support for 4-bit quantized model inference

gq
Georgi Gerganov 2 years ago
parent 7d5889475a
commit 11295af7a6
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

@ -4,3 +4,10 @@
set(TEST_TARGET gpt-j)
add_executable(${TEST_TARGET} main.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
#
# gpt-j-quantize
set(TEST_TARGET gpt-j-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)

@ -126,8 +126,8 @@ for name in list_vars.keys():
ftype = 0
# for efficiency - transpose these matrices:
# "transformer.h.*.mlp.fc_in.weight
# "transformer.h.*.attn.out_proj.weight
# "transformer.h.*.mlp.fc_in.weight"
# "transformer.h.*.attn.out_proj.weight"
# "transformer.h.*.attn.q_proj.weight"
# "transformer.h.*.attn.k_proj.weight"
# "transformer.h.*.attn.v_proj.weight"

@ -130,9 +130,23 @@ bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab &
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
const ggml_type wtype2 = GGML_TYPE_F32;
auto & ctx = model.ctx;
@ -321,9 +335,26 @@ bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab &
return false;
}
const size_t bpe = tensor->type == GGML_TYPE_I8 ? 1 : (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
if (0) {
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
if (nelements*bpe != ggml_nbytes(tensor)) {
size_t bpe = 0;
switch (ftype) {
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
return false;
}
};
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;

@ -0,0 +1,390 @@
#include "ggml/ggml.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <regex>
#define QK 32
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k) {
const int nb = k / QK;
const size_t row_size = nb*(sizeof(float) + sizeof(uint8_t)*QK/2);
assert(k % QK == 0);
uint8_t pp[QK/2];
char * pdst = (char *) dst;
for (int j = 0; j < n; j += k) {
float * pd = (float *) (pdst + (j/k)*row_size);
uint8_t * pb = (uint8_t *) (pd + nb);
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
{
for (int l = 0; l < QK; l++) {
const float v = src[j + i*QK + l];
amax = std::max(amax, fabsf(v));
}
const float d = amax / ((1 << 3) - 1);
const float id = d ? 1.0f/d : 0.0f;
pd[i] = d;
for (int l = 0; l < QK; l += 2) {
const float v0 = (src[j + i*QK + l + 0])*id;
const float v1 = (src[j + i*QK + l + 1])*id;
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb + i*QK/2, pp, sizeof(pp));
}
}
}
return (n/k)*row_size;
}
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k) {
const int nb = k / QK;
const size_t row_size = nb*(2*sizeof(float) + sizeof(uint8_t)*QK/2);
assert(k % QK == 0);
uint8_t pp[QK/2];
char * pdst = (char *) dst;
for (int j = 0; j < n; j += k) {
float * pm = (float *) (pdst + (j/k)*row_size);
float * pd = (float *) (pm + nb);
uint8_t * pb = (uint8_t *) (pd + nb);
//printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
for (int i = 0; i < nb; i++) {
float min = std::numeric_limits<float>::max();
float max = std::numeric_limits<float>::min();
{
for (int l = 0; l < QK; l++) {
const float v = src[j + i*QK + l];
if (v < min) min = v;
if (v > max) max = v;
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
pm[i] = min;
pd[i] = d;
for (int l = 0; l < QK; l += 2) {
const float v0 = (src[j + i*QK + l + 0] - min)*id;
const float v1 = (src[j + i*QK + l + 1] - min)*id;
const uint8_t vi0 = round(v0);
const uint8_t vi1 = round(v1);
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb + i*QK/2, pp, sizeof(pp));
}
}
}
return (n/k)*row_size;
}
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t f16 = 1;
};
// quantize a model
bool gptj_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
ggml_type type = GGML_TYPE_Q4_1;
switch (itype) {
case 2: type = GGML_TYPE_Q4_0; break;
case 3: type = GGML_TYPE_Q4_1; break;
default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
};
if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
return false;
}
gpt_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
auto finp = std::ifstream(fname_inp, std::ios::binary);
if (!finp) {
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
return false;
}
auto fout = std::ofstream(fname_out, std::ios::binary);
if (!fout) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
return false;
}
// verify magic
{
uint32_t magic;
finp.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
return false;
}
fout.write((char *) &magic, sizeof(magic));
}
gptj_hparams hparams;
// load hparams
{
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fout.write((char *) &itype, sizeof(hparams.f16));
}
// load vocab
{
int32_t n_vocab = 0;
finp.read ((char *) &n_vocab, sizeof(n_vocab));
fout.write((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
finp.read ((char *) &len, sizeof(len));
fout.write((char *) &len, sizeof(len));
word.resize(len);
finp.read ((char *) word.data(), len);
fout.write((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// load weights
{
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<float> data;
std::vector<float> work;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (finp.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
finp.read (&name[0], length);
{
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
}
if (ftype != 0) {
fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
return false;
}
data.resize(nelements);
finp.read(reinterpret_cast<char *>(data.data()), nelements * sizeof(float));
// regexes of tensor names to be quantized
const std::vector<std::string> k_names = {
".*weight",
};
bool quantize = false;
for (const auto & s : k_names) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// quantize only 2D tensors
quantize &= (n_dims == 2);
if (quantize) {
ftype = itype;
}
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
for (int i = 0; i < n_dims; ++i) {
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
fout.write(&name[0], length);
if (quantize) {
printf("quantizing .. ");
work.resize(nelements); // for quantization
size_t cur_size = 0;
switch (type) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data.data(), work.data(), nelements, ne[0]);
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data.data(), work.data(), nelements, ne[0]);
} break;
default:
{
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
return false;
}
}
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB\n", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
} else {
printf("\n");
fout.write(reinterpret_cast<char *>(data.data()), nelements * sizeof(float));
total_size_new += nelements * sizeof(float);
}
total_size_org += nelements * sizeof(float);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
}
finp.close();
fout.close();
return true;
}
// usage:
// ./gpt-2-quantize models/gpt-2-117M/ggml-model.bin models/gpt-2-117M/ggml-model-quant.bin type
//
int main(int argc, char ** argv) {
if (argc != 4) {
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
fprintf(stderr, " type = 2 - q4_0\n");
fprintf(stderr, " type = 3 - q4_1\n");
return 1;
}
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const int itype = atoi(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!gptj_model_quantize(fname_inp, fname_out, itype)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = ggml_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
return 0;
}
Loading…
Cancel
Save