# include "whisper.h"
# include "ggml.h"
# include <algorithm>
# include <cassert>
# define _USE_MATH_DEFINES
# include <cmath>
# include <cstdio>
# include <cstring>
# include <fstream>
# include <map>
# include <string>
# include <thread>
# include <vector>
# define USE_FLASH_ATTN
# define USE_FLASH_FF
// available whisper models
enum e_model {
MODEL_UNKNOWN ,
MODEL_TINY ,
MODEL_BASE ,
MODEL_SMALL ,
MODEL_MEDIUM ,
MODEL_LARGE ,
} ;
static const std : : map < std : : string , std : : pair < int , std : : string > > g_lang = {
{ " en " , { 0 , " english " , } } ,
{ " zh " , { 1 , " chinese " , } } ,
{ " de " , { 2 , " german " , } } ,
{ " es " , { 3 , " spanish " , } } ,
{ " ru " , { 4 , " russian " , } } ,
{ " ko " , { 5 , " korean " , } } ,
{ " fr " , { 6 , " french " , } } ,
{ " ja " , { 7 , " japanese " , } } ,
{ " pt " , { 8 , " portuguese " , } } ,
{ " tr " , { 9 , " turkish " , } } ,
{ " pl " , { 10 , " polish " , } } ,
{ " ca " , { 11 , " catalan " , } } ,
{ " nl " , { 12 , " dutch " , } } ,
{ " ar " , { 13 , " arabic " , } } ,
{ " sv " , { 14 , " swedish " , } } ,
{ " it " , { 15 , " italian " , } } ,
{ " id " , { 16 , " indonesian " , } } ,
{ " hi " , { 17 , " hindi " , } } ,
{ " fi " , { 18 , " finnish " , } } ,
{ " vi " , { 19 , " vietnamese " , } } ,
{ " iw " , { 20 , " hebrew " , } } ,
{ " uk " , { 21 , " ukrainian " , } } ,
{ " el " , { 22 , " greek " , } } ,
{ " ms " , { 23 , " malay " , } } ,
{ " cs " , { 24 , " czech " , } } ,
{ " ro " , { 25 , " romanian " , } } ,
{ " da " , { 26 , " danish " , } } ,
{ " hu " , { 27 , " hungarian " , } } ,
{ " ta " , { 28 , " tamil " , } } ,
{ " no " , { 29 , " norwegian " , } } ,
{ " th " , { 30 , " thai " , } } ,
{ " ur " , { 31 , " urdu " , } } ,
{ " hr " , { 32 , " croatian " , } } ,
{ " bg " , { 33 , " bulgarian " , } } ,
{ " lt " , { 34 , " lithuanian " , } } ,
{ " la " , { 35 , " latin " , } } ,
{ " mi " , { 36 , " maori " , } } ,
{ " ml " , { 37 , " malayalam " , } } ,
{ " cy " , { 38 , " welsh " , } } ,
{ " sk " , { 39 , " slovak " , } } ,
{ " te " , { 40 , " telugu " , } } ,
{ " fa " , { 41 , " persian " , } } ,
{ " lv " , { 42 , " latvian " , } } ,
{ " bn " , { 43 , " bengali " , } } ,
{ " sr " , { 44 , " serbian " , } } ,
{ " az " , { 45 , " azerbaijani " , } } ,
{ " sl " , { 46 , " slovenian " , } } ,
{ " kn " , { 47 , " kannada " , } } ,
{ " et " , { 48 , " estonian " , } } ,
{ " mk " , { 49 , " macedonian " , } } ,
{ " br " , { 50 , " breton " , } } ,
{ " eu " , { 51 , " basque " , } } ,
{ " is " , { 52 , " icelandic " , } } ,
{ " hy " , { 53 , " armenian " , } } ,
{ " ne " , { 54 , " nepali " , } } ,
{ " mn " , { 55 , " mongolian " , } } ,
{ " bs " , { 56 , " bosnian " , } } ,
{ " kk " , { 57 , " kazakh " , } } ,
{ " sq " , { 58 , " albanian " , } } ,
{ " sw " , { 59 , " swahili " , } } ,
{ " gl " , { 60 , " galician " , } } ,
{ " mr " , { 61 , " marathi " , } } ,
{ " pa " , { 62 , " punjabi " , } } ,
{ " si " , { 63 , " sinhala " , } } ,
{ " km " , { 64 , " khmer " , } } ,
{ " sn " , { 65 , " shona " , } } ,
{ " yo " , { 66 , " yoruba " , } } ,
{ " so " , { 67 , " somali " , } } ,
{ " af " , { 68 , " afrikaans " , } } ,
{ " oc " , { 69 , " occitan " , } } ,
{ " ka " , { 70 , " georgian " , } } ,
{ " be " , { 71 , " belarusian " , } } ,
{ " tg " , { 72 , " tajik " , } } ,
{ " sd " , { 73 , " sindhi " , } } ,
{ " gu " , { 74 , " gujarati " , } } ,
{ " am " , { 75 , " amharic " , } } ,
{ " yi " , { 76 , " yiddish " , } } ,
{ " lo " , { 77 , " lao " , } } ,
{ " uz " , { 78 , " uzbek " , } } ,
{ " fo " , { 79 , " faroese " , } } ,
{ " ht " , { 80 , " haitian creole " , } } ,
{ " ps " , { 81 , " pashto " , } } ,
{ " tk " , { 82 , " turkmen " , } } ,
{ " nn " , { 83 , " nynorsk " , } } ,
{ " mt " , { 84 , " maltese " , } } ,
{ " sa " , { 85 , " sanskrit " , } } ,
{ " lb " , { 86 , " luxembourgish " , } } ,
{ " my " , { 87 , " myanmar " , } } ,
{ " bo " , { 88 , " tibetan " , } } ,
{ " tl " , { 89 , " tagalog " , } } ,
{ " mg " , { 90 , " malagasy " , } } ,
{ " as " , { 91 , " assamese " , } } ,
{ " tt " , { 92 , " tatar " , } } ,
{ " haw " , { 93 , " hawaiian " , } } ,
{ " ln " , { 94 , " lingala " , } } ,
{ " ha " , { 95 , " hausa " , } } ,
{ " ba " , { 96 , " bashkir " , } } ,
{ " jw " , { 97 , " javanese " , } } ,
{ " su " , { 98 , " sundanese " , } } ,
} ;
static const size_t MB = 1024 * 1024 ;
static const std : : map < e_model , size_t > MEM_REQ_MODEL = {
{ MODEL_TINY , 86ull * MB } ,
{ MODEL_BASE , 165ull * MB } ,
{ MODEL_SMALL , 540ull * MB } ,
{ MODEL_MEDIUM , 1650ull * MB } ,
{ MODEL_LARGE , 3260ull * MB } ,
} ;
static const std : : map < e_model , size_t > MEM_REQ_ENCODE = {
{ MODEL_TINY , 80ull * MB } ,
{ MODEL_BASE , 128ull * MB } ,
{ MODEL_SMALL , 300ull * MB } ,
{ MODEL_MEDIUM , 680ull * MB } ,
{ MODEL_LARGE , 1100ull * MB } ,
} ;
static const std : : map < e_model , size_t > MEM_REQ_ENCODE_LAYER = {
{ MODEL_TINY , 64ull * MB } ,
{ MODEL_BASE , 84ull * MB } ,
{ MODEL_SMALL , 128ull * MB } ,
{ MODEL_MEDIUM , 172ull * MB } ,
{ MODEL_LARGE , 216ull * MB } ,
} ;
static const std : : map < e_model , size_t > MEM_REQ_DECODE = {
{ MODEL_TINY , 94ull * MB } ,
{ MODEL_BASE , 96ull * MB } ,
{ MODEL_SMALL , 98ull * MB } ,
{ MODEL_MEDIUM , 100ull * MB } ,
{ MODEL_LARGE , 102ull * MB } ,
} ;
static const std : : map < e_model , size_t > MEM_REQ_DECODE_LAYER = {
{ MODEL_TINY , 32ull * MB } ,
{ MODEL_BASE , 44ull * MB } ,
{ MODEL_SMALL , 64ull * MB } ,
{ MODEL_MEDIUM , 84ull * MB } ,
{ MODEL_LARGE , 110ull * MB } ,
} ;
struct whisper_mel {
int n_len ;
int n_mel ;
std : : vector < float > data ;
} ;
struct whisper_filters {
int32_t n_mel ;
int32_t n_fft ;
std : : vector < float > data ;
} ;
struct whisper_vocab {
using id = int32_t ;
using token = std : : string ;
int n_vocab = 51864 ;
std : : map < token , id > token_to_id ;
std : : map < id , token > id_to_token ;
id token_eot = 50256 ;
id token_sot = 50257 ;
id token_prev = 50360 ;
id token_solm = 50361 ; // ??
id token_not = 50362 ; // no timestamps
id token_beg = 50363 ;
// available tasks
static const id token_translate = 50358 ;
static const id token_transcribe = 50359 ;
bool is_multilingual ( ) const {
return n_vocab = = 51865 ;
}
} ;
struct whisper_result {
int64_t t ;
whisper_token id ;
} ;
struct whisper_segment {
int64_t t0 ;
int64_t t1 ;
std : : string text ;
} ;
// medium
// hparams: {
// 'n_mels': 80,
// 'n_vocab': 51864,
// 'n_audio_ctx': 1500,
// 'n_audio_state': 1024,
// 'n_audio_head': 16,
// 'n_audio_layer': 24,
// 'n_text_ctx': 448,
// 'n_text_state': 1024,
// 'n_text_head': 16,
// 'n_text_layer': 24
// }
//
// default hparams (Whisper tiny)
struct whisper_hparams {
int32_t n_vocab = 51864 ;
int32_t n_audio_ctx = 1500 ;
int32_t n_audio_state = 384 ;
int32_t n_audio_head = 6 ;
int32_t n_audio_layer = 4 ;
int32_t n_text_ctx = 448 ;
int32_t n_text_state = 384 ;
int32_t n_text_head = 6 ;
int32_t n_text_layer = 4 ;
int32_t n_mels = 80 ;
int32_t f16 = 1 ;
} ;
// audio encoding layer
struct whisper_layer_encoder {
// encoder.blocks.*.attn_ln
struct ggml_tensor * attn_ln_0_w ;
struct ggml_tensor * attn_ln_0_b ;
// encoder.blocks.*.attn.out
struct ggml_tensor * attn_ln_1_w ;
struct ggml_tensor * attn_ln_1_b ;
// encoder.blocks.*.attn.query
struct ggml_tensor * attn_q_w ;
struct ggml_tensor * attn_q_b ;
// encoder.blocks.*.attn.key
struct ggml_tensor * attn_k_w ;
// encoder.blocks.*.attn.value
struct ggml_tensor * attn_v_w ;
struct ggml_tensor * attn_v_b ;
// encoder.blocks.*.mlp_ln
struct ggml_tensor * mlp_ln_w ;
struct ggml_tensor * mlp_ln_b ;
// encoder.blocks.*.mlp.0
struct ggml_tensor * mlp_0_w ;
struct ggml_tensor * mlp_0_b ;
// encoder.blocks.*.mlp.2
struct ggml_tensor * mlp_1_w ;
struct ggml_tensor * mlp_1_b ;
} ;
// token decoding layer
struct whisper_layer_decoder {
// decoder.blocks.*.attn_ln
struct ggml_tensor * attn_ln_0_w ;
struct ggml_tensor * attn_ln_0_b ;
// decoder.blocks.*.attn.out
struct ggml_tensor * attn_ln_1_w ;
struct ggml_tensor * attn_ln_1_b ;
// decoder.blocks.*.attn.query
struct ggml_tensor * attn_q_w ;
struct ggml_tensor * attn_q_b ;
// decoder.blocks.*.attn.key
struct ggml_tensor * attn_k_w ;
// decoder.blocks.*.attn.value
struct ggml_tensor * attn_v_w ;
struct ggml_tensor * attn_v_b ;
// decoder.blocks.*.cross_attn_ln
struct ggml_tensor * cross_attn_ln_0_w ;
struct ggml_tensor * cross_attn_ln_0_b ;
// decoder.blocks.*.cross_attn.out
struct ggml_tensor * cross_attn_ln_1_w ;
struct ggml_tensor * cross_attn_ln_1_b ;
// decoder.blocks.*.cross_attn.query
struct ggml_tensor * cross_attn_q_w ;
struct ggml_tensor * cross_attn_q_b ;
// decoder.blocks.*.cross_attn.key
struct ggml_tensor * cross_attn_k_w ;
// decoder.blocks.*.cross_attn.value
struct ggml_tensor * cross_attn_v_w ;
struct ggml_tensor * cross_attn_v_b ;
// decoder.blocks.*.mlp_ln
struct ggml_tensor * mlp_ln_w ;
struct ggml_tensor * mlp_ln_b ;
// decoder.blocks.*.mlp.0
struct ggml_tensor * mlp_0_w ;
struct ggml_tensor * mlp_0_b ;
// decoder.blocks.*.mlp.2
struct ggml_tensor * mlp_1_w ;
struct ggml_tensor * mlp_1_b ;
} ;
struct whisper_model {
e_model type = MODEL_UNKNOWN ;
whisper_hparams hparams ;
whisper_filters filters ;
// encoder.positional_embedding
struct ggml_tensor * e_pe ;
// encoder.conv1
struct ggml_tensor * e_conv_1_w ;
struct ggml_tensor * e_conv_1_b ;
// encoder.conv2
struct ggml_tensor * e_conv_2_w ;
struct ggml_tensor * e_conv_2_b ;
// encoder.ln_post
struct ggml_tensor * e_ln_w ;
struct ggml_tensor * e_ln_b ;
// decoder.positional_embedding
struct ggml_tensor * d_pe ; // DD
// decoder.token_embedding
struct ggml_tensor * d_te ; // DD
// decoder.ln
struct ggml_tensor * d_ln_w ; // DD
struct ggml_tensor * d_ln_b ; // DD
std : : vector < whisper_layer_encoder > layers_encoder ;
std : : vector < whisper_layer_decoder > layers_decoder ;
// key + value memory
struct ggml_tensor * memory_k ;
struct ggml_tensor * memory_v ;
struct ggml_tensor * memory_cross_k ;
struct ggml_tensor * memory_cross_v ;
//
struct ggml_context * ctx ;
std : : map < std : : string , struct ggml_tensor * > tensors ;
} ;
struct whisper_context {
int64_t t_load_us = 0 ;
int64_t t_mel_us = 0 ;
int64_t t_sample_us = 0 ;
int64_t t_encode_us = 0 ;
int64_t t_decode_us = 0 ;
int64_t t_start_us = 0 ;
std : : vector < uint8_t > buf_model ;
std : : vector < uint8_t > buf_compute ;
std : : vector < uint8_t > buf_compute_layer ;
whisper_model model ;
whisper_vocab vocab ;
whisper_mel mel ;
std : : vector < float > probs ;
std : : vector < float > logits ;
std : : vector < whisper_result > result_cur ;
std : : vector < whisper_segment > result_all ;
std : : vector < whisper_token > prompt_past ;
} ;
// load the model from a ggml file
//
// file format:
//
// - hparams
// - pre-computed mel filters
// - vocab
// - weights
//
// see the convert-pt-to-ggml.py script for details
//
bool whisper_model_load ( const std : : string & fname , whisper_context & wctx ) {
fprintf ( stderr , " %s: loading model from '%s' \n " , __func__ , fname . c_str ( ) ) ;
auto & model = wctx . model ;
auto & vocab = wctx . vocab ;
auto fin = std : : ifstream ( fname , std : : ios : : binary ) ;
if ( ! fin ) {
fprintf ( stderr , " %s: failed to open '%s' \n " , __func__ , fname . c_str ( ) ) ;
return false ;
}
// verify magic
{
uint32_t magic ;
fin . read ( ( char * ) & magic , sizeof ( magic ) ) ;
if ( magic ! = 0x67676d6c ) {
fprintf ( stderr , " %s: invalid model file '%s' (bad magic) \n " , __func__ , fname . c_str ( ) ) ;
return false ;
}
}
//load hparams
{
auto & hparams = model . hparams ;
fin . read ( ( char * ) & hparams . n_vocab , sizeof ( hparams . n_vocab ) ) ;
fin . read ( ( char * ) & hparams . n_audio_ctx , sizeof ( hparams . n_audio_ctx ) ) ;
fin . read ( ( char * ) & hparams . n_audio_state , sizeof ( hparams . n_audio_state ) ) ;
fin . read ( ( char * ) & hparams . n_audio_head , sizeof ( hparams . n_audio_head ) ) ;
fin . read ( ( char * ) & hparams . n_audio_layer , sizeof ( hparams . n_audio_layer ) ) ;
fin . read ( ( char * ) & hparams . n_text_ctx , sizeof ( hparams . n_text_ctx ) ) ;
fin . read ( ( char * ) & hparams . n_text_state , sizeof ( hparams . n_text_state ) ) ;
fin . read ( ( char * ) & hparams . n_text_head , sizeof ( hparams . n_text_head ) ) ;
fin . read ( ( char * ) & hparams . n_text_layer , sizeof ( hparams . n_text_layer ) ) ;
fin . read ( ( char * ) & hparams . n_mels , sizeof ( hparams . n_mels ) ) ;
fin . read ( ( char * ) & hparams . f16 , sizeof ( hparams . f16 ) ) ;
assert ( hparams . n_text_state = = hparams . n_audio_state ) ;
if ( hparams . n_audio_layer = = 4 ) {
model . type = e_model : : MODEL_TINY ;
}
if ( hparams . n_audio_layer = = 6 ) {
model . type = e_model : : MODEL_BASE ;
}
if ( hparams . n_audio_layer = = 12 ) {
model . type = e_model : : MODEL_SMALL ;
}
if ( hparams . n_audio_layer = = 24 ) {
model . type = e_model : : MODEL_MEDIUM ;
}
if ( hparams . n_audio_layer = = 32 ) {
model . type = e_model : : MODEL_LARGE ;
}
fprintf ( stderr , " %s: n_vocab = %d \n " , __func__ , hparams . n_vocab ) ;
fprintf ( stderr , " %s: n_audio_ctx = %d \n " , __func__ , hparams . n_audio_ctx ) ;
fprintf ( stderr , " %s: n_audio_state = %d \n " , __func__ , hparams . n_audio_state ) ;
fprintf ( stderr , " %s: n_audio_head = %d \n " , __func__ , hparams . n_audio_head ) ;
fprintf ( stderr , " %s: n_audio_layer = %d \n " , __func__ , hparams . n_audio_layer ) ;
fprintf ( stderr , " %s: n_text_ctx = %d \n " , __func__ , hparams . n_text_ctx ) ;
fprintf ( stderr , " %s: n_text_state = %d \n " , __func__ , hparams . n_text_state ) ;
fprintf ( stderr , " %s: n_text_head = %d \n " , __func__ , hparams . n_text_head ) ;
fprintf ( stderr , " %s: n_text_layer = %d \n " , __func__ , hparams . n_text_layer ) ;
fprintf ( stderr , " %s: n_mels = %d \n " , __func__ , hparams . n_mels ) ;
fprintf ( stderr , " %s: f16 = %d \n " , __func__ , hparams . f16 ) ;
fprintf ( stderr , " %s: type = %d \n " , __func__ , model . type ) ;
wctx . buf_model . resize ( MEM_REQ_MODEL . at ( model . type ) ) ;
wctx . buf_compute . resize ( std : : max ( MEM_REQ_ENCODE . at ( model . type ) , MEM_REQ_DECODE . at ( model . type ) ) ) ;
wctx . buf_compute_layer . resize ( std : : max ( MEM_REQ_ENCODE_LAYER . at ( model . type ) , MEM_REQ_DECODE_LAYER . at ( model . type ) ) ) ;
// this is the total memory required to run the inference
const size_t mem_required =
wctx . buf_model . size ( ) +
wctx . buf_compute . size ( ) +
wctx . buf_compute_layer . size ( ) ;
fprintf ( stderr , " %s: mem_required = %.2f MB \n " , __func__ , mem_required / 1024.0 / 1024.0 ) ;
}
// load mel filters
{
auto & filters = wctx . model . filters ;
fin . read ( ( char * ) & filters . n_mel , sizeof ( filters . n_mel ) ) ;
fin . read ( ( char * ) & filters . n_fft , sizeof ( filters . n_fft ) ) ;
filters . data . resize ( filters . n_mel * filters . n_fft ) ;
fin . read ( ( char * ) filters . data . data ( ) , filters . data . size ( ) * sizeof ( float ) ) ;
}
// load vocab
{
int32_t n_vocab = 0 ;
fin . read ( ( char * ) & n_vocab , sizeof ( n_vocab ) ) ;
//if (n_vocab != model.hparams.n_vocab) {
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
// return false;
//}
std : : string word ;
for ( int i = 0 ; i < n_vocab ; i + + ) {
uint32_t len ;
fin . read ( ( char * ) & len , sizeof ( len ) ) ;
word . resize ( len ) ;
fin . read ( ( char * ) word . data ( ) , len ) ;
vocab . token_to_id [ word ] = i ;
vocab . id_to_token [ i ] = word ;
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
}
vocab . n_vocab = model . hparams . n_vocab ;
if ( vocab . is_multilingual ( ) ) {
vocab . token_eot + + ;
vocab . token_sot + + ;
vocab . token_prev + + ;
vocab . token_solm + + ;
vocab . token_not + + ;
vocab . token_beg + + ;
}
if ( n_vocab < model . hparams . n_vocab ) {
fprintf ( stderr , " %s: adding %d extra tokens \n " , __func__ , model . hparams . n_vocab - n_vocab ) ;
for ( int i = n_vocab ; i < model . hparams . n_vocab ; i + + ) {
if ( i > vocab . token_beg ) {
word = " [_TT_ " + std : : to_string ( i - vocab . token_beg ) + " ] " ;
} else if ( i = = vocab . token_eot ) {
word = " [_EOT_] " ;
} else if ( i = = vocab . token_sot ) {
word = " [_SOT_] " ;
} else if ( i = = vocab . token_prev ) {
word = " [_PREV_] " ;
} else if ( i = = vocab . token_not ) {
word = " [_NOT_] " ;
} else if ( i = = vocab . token_beg ) {
word = " [_BEG_] " ;
} else {
word = " [_extra_token_ " + std : : to_string ( i ) + " ] " ;
}
vocab . token_to_id [ word ] = i ;
vocab . id_to_token [ i ] = word ;
}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// in order to save memory and also to speed up the computation
const ggml_type wtype = model . hparams . f16 ? GGML_TYPE_F16 : GGML_TYPE_F32 ;
size_t ctx_size = 0 ;
{
const auto & hparams = model . hparams ;
const int n_vocab = hparams . n_vocab ;
const int n_audio_ctx = hparams . n_audio_ctx ;
const int n_audio_state = hparams . n_audio_state ;
const int n_audio_layer = hparams . n_audio_layer ;
const int n_text_ctx = hparams . n_text_ctx ;
const int n_text_state = hparams . n_text_state ;
const int n_text_layer = hparams . n_text_layer ;
const int n_mels = hparams . n_mels ;
// encoder
{
// TODO: F16 .. maybe not?
ctx_size + = n_audio_ctx * n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ; // e_pe;
ctx_size + = 3 * n_mels * n_audio_state * ggml_type_size ( wtype ) ; // e_conv_1_w
ctx_size + = n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ; // e_conv_1_b
ctx_size + = 3 * n_audio_state * n_audio_state * ggml_type_size ( wtype ) ; // e_conv_2_w
ctx_size + = n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ; // e_conv_2_b
ctx_size + = n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ; // e_ln_w;
ctx_size + = n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ; // e_ln_b;
}
// decoder
{
// TODO: F16 .. maybe not?
ctx_size + = n_text_ctx * n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ; // d_pe;
ctx_size + = n_vocab * n_text_state * ggml_type_size ( wtype ) ; // d_te;
ctx_size + = n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ; // d_ln_w;
ctx_size + = n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ; // d_ln_b;
}
// encoder layers
{
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_ln_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_ln_b
ctx_size + = n_audio_layer * ( 4 * n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // mlp_0_w
ctx_size + = n_audio_layer * ( 4 * n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_0_b
ctx_size + = n_audio_layer * ( 4 * n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // mlp_1_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_1_b
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_0_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_0_b
ctx_size + = n_audio_layer * ( n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // attn_q_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_q_b
ctx_size + = n_audio_layer * ( n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // attn_k_w
ctx_size + = n_audio_layer * ( n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // attn_v_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_v_b
ctx_size + = n_audio_layer * ( n_audio_state * n_audio_state * ggml_type_size ( wtype ) ) ; // attn_ln_1_w
ctx_size + = n_audio_layer * ( n_audio_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_1_b
}
// decoder layers
{
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_ln_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_ln_b
ctx_size + = n_text_layer * ( 4 * n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // mlp_0_w
ctx_size + = n_text_layer * ( 4 * n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_0_b
ctx_size + = n_text_layer * ( 4 * n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // mlp_1_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // mlp_1_b
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_0_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_0_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // attn_q_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_q_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // attn_k_w
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // attn_v_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_v_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // attn_ln_1_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // attn_ln_1_b
//
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // cross_attn_ln_0_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // cross_attn_ln_0_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // cross_attn_q_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // cross_attn_q_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // cross_attn_k_w
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // cross_attn_v_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // cross_attn_v_b
ctx_size + = n_text_layer * ( n_text_state * n_text_state * ggml_type_size ( wtype ) ) ; // cross_attn_ln_1_w
ctx_size + = n_text_layer * ( n_text_state * ggml_type_size ( GGML_TYPE_F32 ) ) ; // cross_attn_ln_1_b
}
ctx_size + = n_text_layer * n_text_ctx * n_text_state * ggml_type_size ( GGML_TYPE_F16 ) ; // memory_k
ctx_size + = n_text_layer * n_text_ctx * n_text_state * ggml_type_size ( GGML_TYPE_F16 ) ; // memory_v
ctx_size + = n_text_layer * n_audio_ctx * n_text_state * ggml_type_size ( GGML_TYPE_F16 ) ; // memory_cross_k
ctx_size + = n_text_layer * n_audio_ctx * n_text_state * ggml_type_size ( GGML_TYPE_F16 ) ; // memory_cross_v
ctx_size + = ( 15 + 15 * n_audio_layer + 24 * n_text_layer ) * 256 ; // object overhead
fprintf ( stderr , " %s: ggml ctx size = %6.2f MB \n " , __func__ , ctx_size / ( 1024.0 * 1024.0 ) ) ;
}
// create the ggml context
{
struct ggml_init_params params = {
. mem_size = wctx . buf_model . size ( ) ,
. mem_buffer = wctx . buf_model . data ( ) ,
} ;
model . ctx = ggml_init ( params ) ;
if ( ! model . ctx ) {
fprintf ( stderr , " %s: ggml_init() failed \n " , __func__ ) ;
return false ;
}
}
// prepare memory for the weights
{
auto & ctx = model . ctx ;
const auto & hparams = model . hparams ;
const int n_vocab = hparams . n_vocab ;
const int n_audio_ctx = hparams . n_audio_ctx ;
const int n_audio_state = hparams . n_audio_state ;
const int n_audio_layer = hparams . n_audio_layer ;
const int n_text_ctx = hparams . n_text_ctx ;
const int n_text_state = hparams . n_text_state ;
const int n_text_layer = hparams . n_text_layer ;
const int n_mels = hparams . n_mels ;
model . layers_encoder . resize ( n_audio_layer ) ;
model . layers_decoder . resize ( n_text_layer ) ;
// encoder
{
model . e_pe = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_audio_state , n_audio_ctx ) ;
model . e_conv_1_w = ggml_new_tensor_3d ( ctx , wtype , 3 , n_mels , n_audio_state ) ;
model . e_conv_1_b = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , 1 , n_audio_state ) ;
model . e_conv_2_w = ggml_new_tensor_3d ( ctx , wtype , 3 , n_audio_state , n_audio_state ) ;
model . e_conv_2_b = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , 1 , n_audio_state ) ;
model . e_ln_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
model . e_ln_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
// map by name
model . tensors [ " encoder.positional_embedding " ] = model . e_pe ;
model . tensors [ " encoder.conv1.weight " ] = model . e_conv_1_w ;
model . tensors [ " encoder.conv1.bias " ] = model . e_conv_1_b ;
model . tensors [ " encoder.conv2.weight " ] = model . e_conv_2_w ;
model . tensors [ " encoder.conv2.bias " ] = model . e_conv_2_b ;
model . tensors [ " encoder.ln_post.weight " ] = model . e_ln_w ;
model . tensors [ " encoder.ln_post.bias " ] = model . e_ln_b ;
for ( int i = 0 ; i < n_audio_layer ; + + i ) {
auto & layer = model . layers_encoder [ i ] ;
layer . mlp_ln_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . mlp_ln_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . mlp_0_w = ggml_new_tensor_2d ( ctx , wtype , n_audio_state , 4 * n_audio_state ) ;
layer . mlp_0_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , 4 * n_audio_state ) ;
layer . mlp_1_w = ggml_new_tensor_2d ( ctx , wtype , 4 * n_audio_state , n_audio_state ) ;
layer . mlp_1_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . attn_ln_0_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . attn_ln_0_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . attn_q_w = ggml_new_tensor_2d ( ctx , wtype , n_audio_state , n_audio_state ) ;
layer . attn_q_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . attn_k_w = ggml_new_tensor_2d ( ctx , wtype , n_audio_state , n_audio_state ) ;
layer . attn_v_w = ggml_new_tensor_2d ( ctx , wtype , n_audio_state , n_audio_state ) ;
layer . attn_v_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
layer . attn_ln_1_w = ggml_new_tensor_2d ( ctx , wtype , n_audio_state , n_audio_state ) ;
layer . attn_ln_1_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_audio_state ) ;
// map by name
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp_ln.weight " ] = layer . mlp_ln_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp_ln.bias " ] = layer . mlp_ln_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp.0.weight " ] = layer . mlp_0_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp.0.bias " ] = layer . mlp_0_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp.2.weight " ] = layer . mlp_1_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .mlp.2.bias " ] = layer . mlp_1_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn_ln.weight " ] = layer . attn_ln_0_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn_ln.bias " ] = layer . attn_ln_0_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.query.weight " ] = layer . attn_q_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.query.bias " ] = layer . attn_q_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.key.weight " ] = layer . attn_k_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.value.weight " ] = layer . attn_v_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.value.bias " ] = layer . attn_v_b ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.out.weight " ] = layer . attn_ln_1_w ;
model . tensors [ " encoder.blocks. " + std : : to_string ( i ) + " .attn.out.bias " ] = layer . attn_ln_1_b ;
}
}
// decoder
{
model . d_pe = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_text_state , n_text_ctx ) ;
model . d_te = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_vocab ) ;
model . d_ln_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
model . d_ln_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
// map by name
model . tensors [ " decoder.positional_embedding " ] = model . d_pe ;
model . tensors [ " decoder.token_embedding.weight " ] = model . d_te ;
model . tensors [ " decoder.ln.weight " ] = model . d_ln_w ;
model . tensors [ " decoder.ln.bias " ] = model . d_ln_b ;
for ( int i = 0 ; i < n_text_layer ; + + i ) {
auto & layer = model . layers_decoder [ i ] ;
layer . mlp_ln_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . mlp_ln_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . mlp_0_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , 4 * n_text_state ) ;
layer . mlp_0_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , 4 * n_text_state ) ;
layer . mlp_1_w = ggml_new_tensor_2d ( ctx , wtype , 4 * n_text_state , n_text_state ) ;
layer . mlp_1_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . attn_ln_0_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . attn_ln_0_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . attn_q_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . attn_q_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . attn_k_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . attn_v_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . attn_v_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . attn_ln_1_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . attn_ln_1_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . cross_attn_ln_0_w = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . cross_attn_ln_0_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . cross_attn_q_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . cross_attn_q_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . cross_attn_k_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . cross_attn_v_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . cross_attn_v_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
layer . cross_attn_ln_1_w = ggml_new_tensor_2d ( ctx , wtype , n_text_state , n_text_state ) ;
layer . cross_attn_ln_1_b = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_text_state ) ;
// map by name
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp_ln.weight " ] = layer . mlp_ln_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp_ln.bias " ] = layer . mlp_ln_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp.0.weight " ] = layer . mlp_0_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp.0.bias " ] = layer . mlp_0_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp.2.weight " ] = layer . mlp_1_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .mlp.2.bias " ] = layer . mlp_1_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn_ln.weight " ] = layer . attn_ln_0_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn_ln.bias " ] = layer . attn_ln_0_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.query.weight " ] = layer . attn_q_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.query.bias " ] = layer . attn_q_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.key.weight " ] = layer . attn_k_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.value.weight " ] = layer . attn_v_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.value.bias " ] = layer . attn_v_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.out.weight " ] = layer . attn_ln_1_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .attn.out.bias " ] = layer . attn_ln_1_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn_ln.weight " ] = layer . cross_attn_ln_0_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn_ln.bias " ] = layer . cross_attn_ln_0_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.query.weight " ] = layer . cross_attn_q_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.query.bias " ] = layer . cross_attn_q_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.key.weight " ] = layer . cross_attn_k_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.value.weight " ] = layer . cross_attn_v_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.value.bias " ] = layer . cross_attn_v_b ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.out.weight " ] = layer . cross_attn_ln_1_w ;
model . tensors [ " decoder.blocks. " + std : : to_string ( i ) + " .cross_attn.out.bias " ] = layer . cross_attn_ln_1_b ;
}
}
}
// key + value memory
{
auto & ctx = model . ctx ;
const auto & hparams = model . hparams ;
const int n_text_state = hparams . n_text_state ;
const int n_text_layer = hparams . n_text_layer ;
const int n_text_ctx = hparams . n_text_ctx ;
// key/value memory for the self-attention layer
{
const int n_mem = n_text_layer * n_text_ctx ;
const int n_elements = n_text_state * n_mem ;
model . memory_k = ggml_new_tensor_1d ( ctx , GGML_TYPE_F16 , n_elements ) ;
model . memory_v = ggml_new_tensor_1d ( ctx , GGML_TYPE_F16 , n_elements ) ;
}
// key/value memory for the cross-attention layer
{
const int n_audio_ctx = hparams . n_audio_ctx ;
const int n_mem = n_text_layer * n_audio_ctx ;
const int n_elements = n_text_state * n_mem ;
model . memory_cross_k = ggml_new_tensor_1d ( ctx , GGML_TYPE_F16 , n_elements ) ;
model . memory_cross_v = ggml_new_tensor_1d ( ctx , GGML_TYPE_F16 , n_elements ) ;
}
const size_t memory_size =
ggml_nbytes ( model . memory_k ) + ggml_nbytes ( model . memory_v ) +
ggml_nbytes ( model . memory_cross_k ) + ggml_nbytes ( model . memory_cross_v ) ;
fprintf ( stderr , " %s: memory size = %8.2f MB \n " , __func__ , memory_size / 1024.0 / 1024.0 ) ;
}
// load weights
{
int n_loaded = 0 ;
size_t total_size = 0 ;
while ( true ) {
int32_t n_dims ;
int32_t length ;
int32_t ftype ;
fin . read ( reinterpret_cast < char * > ( & n_dims ) , sizeof ( n_dims ) ) ;
fin . read ( reinterpret_cast < char * > ( & length ) , sizeof ( length ) ) ;
fin . read ( reinterpret_cast < char * > ( & ftype ) , sizeof ( ftype ) ) ;
if ( fin . eof ( ) ) {
break ;
}
int32_t nelements = 1 ;
int32_t ne [ 3 ] = { 1 , 1 , 1 } ;
for ( int i = 0 ; i < n_dims ; + + i ) {
fin . read ( reinterpret_cast < char * > ( & ne [ i ] ) , sizeof ( ne [ i ] ) ) ;
nelements * = ne [ i ] ;
}
std : : string name ( length , 0 ) ;
fin . read ( & name [ 0 ] , length ) ;
if ( model . tensors . find ( name . data ( ) ) = = model . tensors . end ( ) ) {
fprintf ( stderr , " %s: unknown tensor '%s' in model file \n " , __func__ , name . data ( ) ) ;
return false ;
}
auto tensor = model . tensors [ name . data ( ) ] ;
if ( ggml_nelements ( tensor ) ! = nelements ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file \n " , __func__ , name . data ( ) ) ;
return false ;
}
if ( tensor - > ne [ 0 ] ! = ne [ 0 ] | | tensor - > ne [ 1 ] ! = ne [ 1 ] | | tensor - > ne [ 2 ] ! = ne [ 2 ] ) {
fprintf ( stderr , " %s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d] \n " ,
__func__ , name . data ( ) , tensor - > ne [ 0 ] , tensor - > ne [ 1 ] , tensor - > ne [ 2 ] , ne [ 0 ] , ne [ 1 ] , ne [ 2 ] ) ;
return false ;
}
const size_t bpe = ( ftype = = 0 ) ? sizeof ( float ) : sizeof ( ggml_fp16_t ) ;
if ( nelements * bpe ! = ggml_nbytes ( tensor ) ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file: got %zu, expected %zu \n " ,
__func__ , name . data ( ) , ggml_nbytes ( tensor ) , nelements * bpe ) ;
return false ;
}
fin . read ( reinterpret_cast < char * > ( tensor - > data ) , ggml_nbytes ( tensor ) ) ;
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size + = ggml_nbytes ( tensor ) ;
n_loaded + + ;
}
fprintf ( stderr , " %s: model size = %8.2f MB \n " , __func__ , total_size / 1024.0 / 1024.0 ) ;
if ( n_loaded = = 0 ) {
fprintf ( stderr , " %s: WARN no tensors loaded from model file - assuming empty model for testing \n " , __func__ ) ;
} else if ( n_loaded ! = ( int ) model . tensors . size ( ) ) {
fprintf ( stderr , " %s: ERROR not all tensors loaded from model file - expected %zu, got %d \n " , __func__ , model . tensors . size ( ) , n_loaded ) ;
return false ;
}
}
fin . close ( ) ;
return true ;
}
// evaluate the encoder
//
// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
// part of the transformer model and returns the encoded features
//
// - model: the model
// - n_threads: number of threads to use
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
//
bool whisper_encode (
whisper_context & wctx ,
const int n_threads ,
const int mel_offset ) {
const auto & model = wctx . model ;
const auto & mel_inp = wctx . mel ;
const auto & hparams = model . hparams ;
const int n_ctx = hparams . n_audio_ctx ;
const int n_state = hparams . n_audio_state ;
const int n_head = hparams . n_audio_head ;
const int n_layer = hparams . n_audio_layer ;
const int N = n_ctx ;
const int n_mels = hparams . n_mels ;
assert ( mel_inp . n_mel = = n_mels ) ;
struct ggml_init_params params = {
. mem_size = wctx . buf_compute . size ( ) ,
. mem_buffer = wctx . buf_compute . data ( ) ,
} ;
struct ggml_context * ctx0 = ggml_init ( params ) ;
struct ggml_tensor * mel = ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , 2 * n_ctx , n_mels ) ;
assert ( mel - > type = = GGML_TYPE_F32 ) ;
{
float * dst = ( float * ) mel - > data ;
memset ( dst , 0 , ggml_nbytes ( mel ) ) ;
const int i0 = std : : min ( mel_offset , mel_inp . n_len ) ;
const int i1 = std : : min ( mel_offset + 2 * n_ctx , mel_inp . n_len ) ;
for ( int j = 0 ; j < mel_inp . n_mel ; + + j ) {
for ( int i = i0 ; i < i1 ; + + i ) {
dst [ j * 2 * n_ctx + ( i - i0 ) ] = mel_inp . data [ j * mel_inp . n_len + i ] ;
}
}
}
struct ggml_tensor * cur ;
// convolution + gelu
{
cur = ggml_conv_1d_1s ( ctx0 , model . e_conv_1_w , mel ) ;
cur = ggml_add ( ctx0 ,
ggml_repeat ( ctx0 ,
model . e_conv_1_b ,
cur ) ,
cur ) ;
cur = ggml_gelu ( ctx0 , cur ) ;
cur = ggml_conv_1d_2s ( ctx0 , model . e_conv_2_w , cur ) ;
cur = ggml_add ( ctx0 ,
ggml_repeat ( ctx0 ,
model . e_conv_2_b ,
cur ) ,
cur ) ;
cur = ggml_gelu ( ctx0 , cur ) ;
}
cur = ggml_add ( ctx0 , model . e_pe , ggml_transpose ( ctx0 , cur ) ) ;
struct ggml_tensor * inpL = cur ;
for ( int il = 0 ; il < n_layer ; + + il ) {
const auto & layer = model . layers_encoder [ il ] ;
// create separate context for each layer to reduce memory usage
struct ggml_init_params paramsL = {
. mem_size = wctx . buf_compute_layer . size ( ) ,
. mem_buffer = wctx . buf_compute_layer . data ( ) ,
} ;
struct ggml_context * ctxL = ggml_init ( paramsL ) ;
// norm
{
cur = ggml_norm ( ctxL , inpL ) ;
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add ( ctxL ,
ggml_mul ( ctxL ,
ggml_repeat ( ctxL , layer . attn_ln_0_w , cur ) ,
cur ) ,
ggml_repeat ( ctxL , layer . attn_ln_0_b , cur ) ) ;
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat ( ctxL ,
layer . attn_q_w ,
cur ) ;
Qcur = ggml_add ( ctxL ,
ggml_repeat ( ctxL ,
layer . attn_q_b ,
Qcur ) ,
Qcur ) ;
//Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
// note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat ( ctxL ,
layer . attn_k_w ,
cur ) ;
//Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcur = ggml_mul_mat ( ctxL ,
layer . attn_v_w ,
cur ) ;
Vcur = ggml_add ( ctxL ,
ggml_repeat ( ctxL ,
layer . attn_v_b ,
Vcur ) ,
Vcur ) ;
// ------
# ifdef USE_FLASH_ATTN
struct ggml_tensor * Q =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Qcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F16 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
struct ggml_tensor * K =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Kcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F16 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
struct ggml_tensor * V =
ggml_cpy ( ctxL ,
ggml_permute ( ctxL ,
ggml_reshape_3d ( ctxL ,
Vcur ,
n_state / n_head , n_head , N ) ,
1 , 2 , 0 , 3 ) ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F16 , N , n_state / n_head , n_head )
) ;
struct ggml_tensor * KQV = ggml_flash_attn ( ctxL , Q , K , V , false ) ;
# else
struct ggml_tensor * Q =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Qcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F32 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
struct ggml_tensor * K =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Kcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F16 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctxL , K , Q ) ;
struct ggml_tensor * KQ_scaled =
ggml_scale ( ctxL ,
KQ ,
ggml_new_f32 ( ctxL , 1.0f / sqrt ( float ( n_state ) / n_head ) )
) ;
struct ggml_tensor * KQ_soft_max = ggml_soft_max ( ctxL , KQ_scaled ) ;
//struct ggml_tensor * V_trans =
// ggml_permute(ctxL,
// ggml_cpy(ctxL,
// Vcur,
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
// 1, 2, 0, 3);
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
struct ggml_tensor * V =
ggml_cpy ( ctxL ,
ggml_permute ( ctxL ,
ggml_reshape_3d ( ctxL ,
Vcur ,
n_state / n_head , n_head , N ) ,
0 , 2 , 1 , 3 ) ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F16 , n_state / n_head , N , n_head )
) ;
struct ggml_tensor * KQV = ggml_mul_mat ( ctxL , ggml_transpose ( ctxL , V ) , KQ_soft_max ) ;
# endif
struct ggml_tensor * KQV_merged = ggml_permute ( ctxL , KQV , 0 , 2 , 1 , 3 ) ;
cur = ggml_cpy ( ctxL ,
KQV_merged ,
ggml_new_tensor_2d ( ctxL , GGML_TYPE_F32 , n_state , N ) ) ;
}
// projection
{
cur = ggml_mul_mat ( ctxL ,
layer . attn_ln_1_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . attn_ln_1_b , cur ) ,
cur ) ;
}
// add the input
cur = ggml_add ( ctxL , cur , inpL ) ;
struct ggml_tensor * inpFF = cur ;
// feed-forward network
{
// norm
{
cur = ggml_norm ( ctxL , inpFF ) ;
// cur = mlp_ln_w*cur + mlp_ln_b
cur = ggml_add ( ctxL ,
ggml_mul ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_ln_w , cur ) ,
cur ) ,
ggml_repeat ( ctxL , layer . mlp_ln_b , cur ) ) ;
}
# ifdef USE_FLASH_FF
cur = ggml_flash_ff ( ctxL ,
ggml_cpy ( ctxL , cur , ggml_new_tensor_2d ( ctxL , GGML_TYPE_F16 , n_state , N ) ) ,
layer . mlp_0_w , layer . mlp_0_b , layer . mlp_1_w , layer . mlp_1_b ) ;
# else
// fully connected
cur = ggml_mul_mat ( ctxL ,
layer . mlp_0_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_0_b , cur ) ,
cur ) ;
// GELU activation
cur = ggml_gelu ( ctxL , cur ) ;
// projection
cur = ggml_mul_mat ( ctxL ,
layer . mlp_1_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_1_b , cur ) ,
cur ) ;
# endif
}
// output from this layer
struct ggml_tensor * inpO = ggml_add ( ctxL , cur , inpFF ) ;
{
struct ggml_cgraph gf = { } ;
gf . n_threads = n_threads ;
ggml_build_forward_expand ( & gf , inpO ) ;
ggml_graph_compute ( ctxL , & gf ) ;
//ggml_graph_print(&gf);
}
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
// input for next layer (inpO -> inpL)
memcpy ( inpL - > data , inpO - > data , ggml_nbytes ( inpL ) ) ;
inpL - > op = GGML_OP_NONE ;
inpL - > src0 = NULL ;
inpL - > src1 = NULL ;
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
ggml_free ( ctxL ) ;
}
cur = inpL ;
// norm
{
cur = ggml_norm ( ctx0 , cur ) ;
// cur = ln_f_g*cur + ln_f_b
cur = ggml_add ( ctx0 ,
ggml_mul ( ctx0 ,
ggml_repeat ( ctx0 , model . e_ln_w , cur ) ,
cur ) ,
ggml_repeat ( ctx0 , model . e_ln_b , cur ) ) ;
}
// run the computation
{
struct ggml_cgraph gf = { } ;
gf . n_threads = n_threads ;
ggml_build_forward_expand ( & gf , cur ) ;
ggml_graph_compute ( ctx0 , & gf ) ;
//ggml_graph_print(&gf);
}
// cur
//{
// printf("ne0 = %d\n", cur->ne[0]);
// printf("ne1 = %d\n", cur->ne[1]);
// for (int i = 0; i < 10; ++i) {
// printf("%8.4f ", ((float *)(cur->data))[i]);
// }
// printf("... ");
// for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
// printf("%8.4f ", ((float *)(cur->data))[i]);
// }
// printf("\n");
//}
// pre-compute cross-attention memory
{
struct ggml_cgraph gf = { } ;
gf . n_threads = n_threads ;
// TODO: hack to disconnect the encoded features from the previous graph
cur - > op = GGML_OP_NONE ;
cur - > src0 = NULL ;
cur - > src1 = NULL ;
for ( int il = 0 ; il < model . hparams . n_text_layer ; + + il ) {
auto & layer = model . layers_decoder [ il ] ;
struct ggml_tensor * Kcross = ggml_mul_mat ( ctx0 ,
layer . cross_attn_k_w ,
cur ) ;
Kcross = ggml_scale ( ctx0 , Kcross , ggml_new_f32 ( ctx0 , pow ( float ( n_state ) / n_head , - 0.25 ) ) ) ;
struct ggml_tensor * Vcross = ggml_mul_mat ( ctx0 ,
layer . cross_attn_v_w ,
cur ) ;
Vcross = ggml_add ( ctx0 ,
ggml_repeat ( ctx0 ,
layer . cross_attn_v_b ,
Vcross ) ,
Vcross ) ;
struct ggml_tensor * k = ggml_view_1d ( ctx0 , model . memory_cross_k , n_state * n_ctx , ( ggml_element_size ( model . memory_cross_k ) * n_state ) * ( il * n_ctx ) ) ;
struct ggml_tensor * v = ggml_view_1d ( ctx0 , model . memory_cross_v , n_state * n_ctx , ( ggml_element_size ( model . memory_cross_v ) * n_state ) * ( il * n_ctx ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( ctx0 , Kcross , k ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( ctx0 , Vcross , v ) ) ;
}
ggml_graph_compute ( ctx0 , & gf ) ;
}
////////////////////////////////////////////////////////////////////////////
//printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
ggml_free ( ctx0 ) ;
return true ;
}
// evaluate the decoder
//
// given text prompt + audio features -> predicts the probabilities for the next token
//
// - model: the model
// - n_threads: number of threads to use
// - tokens: text prompt
// - n_tokens: number of tokens in the prompt
// - n_past: number of past tokens to prefix the prompt with
//
bool whisper_decode (
whisper_context & wctx ,
const int n_threads ,
const whisper_token * tokens ,
const int n_tokens ,
const int n_past ) {
const auto & model = wctx . model ;
const auto & hparams = model . hparams ;
auto & logits_out = wctx . logits ;
auto & probs_out = wctx . probs ;
const int n_vocab = hparams . n_vocab ;
const int n_ctx = hparams . n_text_ctx ;
const int n_state = hparams . n_text_state ;
const int n_head = hparams . n_text_head ;
const int n_layer = hparams . n_text_layer ;
const int N = n_tokens ;
const int M = hparams . n_audio_ctx ;
struct ggml_init_params params = {
. mem_size = wctx . buf_compute . size ( ) ,
. mem_buffer = wctx . buf_compute . data ( ) ,
} ;
struct ggml_context * ctx0 = ggml_init ( params ) ;
struct ggml_tensor * embd = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
memcpy ( embd - > data , tokens , N * ggml_element_size ( embd ) ) ;
struct ggml_tensor * position = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
for ( int i = 0 ; i < N ; + + i ) {
( ( int32_t * ) position - > data ) [ i ] = n_past + i ;
}
// token encoding + position encoding
struct ggml_tensor * cur =
ggml_add ( ctx0 ,
ggml_get_rows ( ctx0 , model . d_te , embd ) ,
ggml_get_rows ( ctx0 , model . d_pe , position ) ) ;
struct ggml_tensor * inpL = cur ;
for ( int il = 0 ; il < n_layer ; + + il ) {
const auto & layer = model . layers_decoder [ il ] ;
struct ggml_init_params paramsL = {
. mem_size = wctx . buf_compute_layer . size ( ) ,
. mem_buffer = wctx . buf_compute_layer . data ( ) ,
} ;
struct ggml_context * ctxL = ggml_init ( paramsL ) ;
struct ggml_cgraph gf = { } ;
gf . n_threads = n_threads ;
// norm
{
cur = ggml_norm ( ctxL , inpL ) ;
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add ( ctxL ,
ggml_mul ( ctxL ,
ggml_repeat ( ctxL , layer . attn_ln_0_w , cur ) ,
cur ) ,
ggml_repeat ( ctxL , layer . attn_ln_0_b , cur ) ) ;
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat ( ctxL ,
layer . attn_q_w ,
cur ) ;
Qcur = ggml_add ( ctxL ,
ggml_repeat ( ctxL ,
layer . attn_q_b ,
Qcur ) ,
Qcur ) ;
Qcur = ggml_scale ( ctxL , Qcur , ggml_new_f32 ( ctxL , pow ( float ( n_state ) / n_head , - 0.25 ) ) ) ;
// note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat ( ctxL ,
layer . attn_k_w ,
cur ) ;
Kcur = ggml_scale ( ctxL , Kcur , ggml_new_f32 ( ctxL , pow ( float ( n_state ) / n_head , - 0.25 ) ) ) ;
struct ggml_tensor * Vcur = ggml_mul_mat ( ctxL ,
layer . attn_v_w ,
cur ) ;
Vcur = ggml_add ( ctxL ,
ggml_repeat ( ctxL ,
layer . attn_v_b ,
Vcur ) ,
Vcur ) ;
// store key and value to memory
{
struct ggml_tensor * k = ggml_view_1d ( ctxL , model . memory_k , N * n_state , ( ggml_element_size ( model . memory_k ) * n_state ) * ( il * n_ctx + n_past ) ) ;
struct ggml_tensor * v = ggml_view_1d ( ctxL , model . memory_v , N * n_state , ( ggml_element_size ( model . memory_v ) * n_state ) * ( il * n_ctx + n_past ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( ctxL , Kcur , k ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( ctxL , Vcur , v ) ) ;
}
// ------
struct ggml_tensor * Q =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Qcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F32 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
struct ggml_tensor * K =
ggml_permute ( ctxL ,
ggml_reshape_3d ( ctxL ,
ggml_view_1d ( ctxL , model . memory_k , ( n_past + N ) * n_state , il * n_ctx * ggml_element_size ( model . memory_k ) * n_state ) ,
n_state / n_head , n_head , n_past + N ) ,
0 , 2 , 1 , 3 ) ;
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctxL , K , Q ) ;
//struct ggml_tensor * KQ_scaled =
// ggml_scale(ctxL,
// KQ,
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
// );
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf ( ctxL , KQ , n_past ) ;
struct ggml_tensor * KQ_soft_max = ggml_soft_max ( ctxL , KQ_masked ) ;
struct ggml_tensor * V_trans =
ggml_permute ( ctxL ,
ggml_reshape_3d ( ctxL ,
ggml_view_1d ( ctxL , model . memory_v , ( n_past + N ) * n_state , il * n_ctx * ggml_element_size ( model . memory_v ) * n_state ) ,
n_state / n_head , n_head , n_past + N ) ,
1 , 2 , 0 , 3 ) ;
struct ggml_tensor * KQV = ggml_mul_mat ( ctxL , V_trans , KQ_soft_max ) ;
struct ggml_tensor * KQV_merged = ggml_permute ( ctxL , KQV , 0 , 2 , 1 , 3 ) ;
cur = ggml_cpy ( ctxL ,
KQV_merged ,
ggml_new_tensor_2d ( ctxL , GGML_TYPE_F32 , n_state , N ) ) ;
}
{
cur = ggml_mul_mat ( ctxL ,
layer . attn_ln_1_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . attn_ln_1_b , cur ) ,
cur ) ;
}
// add the input
struct ggml_tensor * inpCA = ggml_add ( ctxL , cur , inpL ) ;
// norm
{
cur = ggml_norm ( ctxL , inpCA ) ; // note: we use inpCA here
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add ( ctxL ,
ggml_mul ( ctxL ,
ggml_repeat ( ctxL , layer . cross_attn_ln_0_w , cur ) ,
cur ) ,
ggml_repeat ( ctxL , layer . cross_attn_ln_0_b , cur ) ) ;
}
// cross-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat ( ctxL ,
layer . cross_attn_q_w ,
cur ) ;
Qcur = ggml_add ( ctxL ,
ggml_repeat ( ctxL ,
layer . cross_attn_q_b ,
Qcur ) ,
Qcur ) ;
Qcur = ggml_scale ( ctxL , Qcur , ggml_new_f32 ( ctxL , pow ( float ( n_state ) / n_head , - 0.25 ) ) ) ;
// Kcross is already scaled
struct ggml_tensor * Kcross =
ggml_reshape_3d ( ctxL ,
ggml_view_1d ( ctxL , model . memory_cross_k , M * n_state , il * M * ggml_element_size ( model . memory_cross_k ) * n_state ) ,
n_state / n_head , n_head , M ) ;
struct ggml_tensor * Vcross =
ggml_reshape_3d ( ctxL ,
ggml_view_1d ( ctxL , model . memory_cross_v , M * n_state , il * M * ggml_element_size ( model . memory_cross_v ) * n_state ) ,
n_state / n_head , n_head , M ) ;
// ------
struct ggml_tensor * Q =
ggml_permute ( ctxL ,
ggml_cpy ( ctxL ,
Qcur ,
ggml_new_tensor_3d ( ctxL , GGML_TYPE_F32 , n_state / n_head , n_head , N ) ) ,
0 , 2 , 1 , 3 ) ;
struct ggml_tensor * K = ggml_permute ( ctxL , Kcross , 0 , 2 , 1 , 3 ) ;
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctxL , K , Q ) ;
//struct ggml_tensor * KQ_scaled =
// ggml_scale(ctxL,
// KQ,
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
// );
// no masking for cross-attention
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
struct ggml_tensor * KQ_soft_max = ggml_soft_max ( ctxL , KQ ) ;
struct ggml_tensor * V_trans = ggml_permute ( ctxL , Vcross , 1 , 2 , 0 , 3 ) ;
struct ggml_tensor * KQV = ggml_mul_mat ( ctxL , V_trans , KQ_soft_max ) ;
struct ggml_tensor * KQV_merged = ggml_permute ( ctxL , KQV , 0 , 2 , 1 , 3 ) ;
// cur = KQV_merged.contiguous().view(n_state, N)
cur = ggml_cpy ( ctxL ,
KQV_merged ,
ggml_new_tensor_2d ( ctxL , GGML_TYPE_F32 , n_state , N ) ) ;
}
// projection
{
cur = ggml_mul_mat ( ctxL ,
layer . cross_attn_ln_1_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . cross_attn_ln_1_b , cur ) ,
cur ) ;
}
// add the input
cur = ggml_add ( ctxL , cur , inpCA ) ;
struct ggml_tensor * inpFF = cur ;
// feed-forward network
{
// norm
{
cur = ggml_norm ( ctxL , inpFF ) ;
// cur = mlp_ln_w*cur + mlp_ln_b
cur = ggml_add ( ctxL ,
ggml_mul ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_ln_w , cur ) ,
cur ) ,
ggml_repeat ( ctxL , layer . mlp_ln_b , cur ) ) ;
}
// fully connected
cur = ggml_mul_mat ( ctxL ,
layer . mlp_0_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_0_b , cur ) ,
cur ) ;
// GELU activation
cur = ggml_gelu ( ctxL , cur ) ;
// projection
cur = ggml_mul_mat ( ctxL ,
layer . mlp_1_w ,
cur ) ;
cur = ggml_add ( ctxL ,
ggml_repeat ( ctxL , layer . mlp_1_b , cur ) ,
cur ) ;
}
// output from this layer
struct ggml_tensor * inpO = ggml_add ( ctxL , cur , inpFF ) ;
{
ggml_build_forward_expand ( & gf , inpO ) ;
ggml_graph_compute ( ctxL , & gf ) ;
//ggml_graph_print(&gf);
}
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
// input for next layer (inpO -> inpL)
memcpy ( inpL - > data , inpO - > data , ggml_nbytes ( inpL ) ) ;
inpL - > op = GGML_OP_NONE ;
inpL - > src0 = NULL ;
inpL - > src1 = NULL ;
if ( N > 1 ) {
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
}
ggml_free ( ctxL ) ;
}
cur = inpL ;
// norm
{
cur = ggml_norm ( ctx0 , cur ) ;
cur = ggml_add ( ctx0 ,
ggml_mul ( ctx0 ,
ggml_repeat ( ctx0 , model . d_ln_w , cur ) ,
cur ) ,
ggml_repeat ( ctx0 , model . d_ln_b , cur ) ) ;
}
struct ggml_tensor * logits = ggml_mul_mat ( ctx0 , model . d_te , cur ) ;
// logits -> probs
cur = ggml_dup ( ctx0 , logits ) ;
cur = ggml_soft_max ( ctx0 , cur ) ; // in-place
// run the computation
{
struct ggml_cgraph gf = { } ;
gf . n_threads = n_threads ;
ggml_build_forward_expand ( & gf , cur ) ;
ggml_graph_compute ( ctx0 , & gf ) ;
}
logits_out . resize ( N * n_vocab ) ;
memcpy ( logits_out . data ( ) , ggml_get_data ( logits ) , sizeof ( float ) * N * n_vocab ) ;
probs_out . resize ( N * n_vocab ) ;
memcpy ( probs_out . data ( ) , ggml_get_data ( cur ) , sizeof ( float ) * N * n_vocab ) ;
if ( N > 1 ) {
//const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
//printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
//printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
}
ggml_free ( ctx0 ) ;
return true ;
}
// the most basic sampling scheme - select the top token
whisper_vocab : : id whisper_sample_best (
const whisper_vocab & vocab ,
const float * probs , bool need_timestamp ) {
int n_logits = vocab . id_to_token . size ( ) ;
std : : vector < std : : pair < double , whisper_vocab : : id > > probs_id ;
probs_id . reserve ( n_logits ) ;
for ( int i = 0 ; i < n_logits ; i + + ) {
probs_id . push_back ( std : : make_pair ( probs [ i ] , i ) ) ;
}
const int top_k = 4 ;
// find the top K tokens
std : : partial_sort (
probs_id . begin ( ) ,
probs_id . begin ( ) + top_k , probs_id . end ( ) ,
[ ] ( const std : : pair < double , whisper_vocab : : id > & a , const std : : pair < double , whisper_vocab : : id > & b ) {
return a . first > b . first ;
} ) ;
probs_id . resize ( top_k ) ;
//printf("\n");
//for (int i = 0; i < (int) probs_id.size(); i++) {
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
//}
if ( need_timestamp ) {
// at the end of the 30-second audio segment, we start giving preference to time tokens
for ( int i = 0 ; i < top_k ; i + + ) {
if ( probs_id [ i ] . second > vocab . token_beg + 1300 & & probs_id [ i ] . first > 0.01 * probs_id [ 0 ] . first ) {
return probs_id [ i ] . second ;
}
}
}
int res = 0 ;
while ( ( probs_id [ res ] . second = = vocab . token_sot | |
probs_id [ res ] . second = = vocab . token_solm | |
probs_id [ res ] . second = = vocab . token_not ) & &
res < ( int ) probs_id . size ( ) - 1 ) {
res + + ;
}
return probs_id [ res ] . second ;
}
// samples only from the timestamps tokens
whisper_vocab : : id whisper_sample_timestamp (
const whisper_vocab & vocab ,
const float * probs ) {
int n_logits = vocab . id_to_token . size ( ) ;
std : : vector < std : : pair < double , whisper_vocab : : id > > probs_id ;
probs_id . reserve ( n_logits ) ;
for ( int i = vocab . token_beg + 1 ; i < n_logits ; i + + ) {
probs_id . push_back ( std : : make_pair ( probs [ i ] , i ) ) ;
}
const int top_k = 10 ;
// find the top K tokens
std : : partial_sort (
probs_id . begin ( ) ,
probs_id . begin ( ) + top_k , probs_id . end ( ) ,
[ ] ( const std : : pair < double , whisper_vocab : : id > & a , const std : : pair < double , whisper_vocab : : id > & b ) {
return a . first > b . first ;
} ) ;
probs_id . resize ( top_k ) ;
//printf("\n");
//for (int i = 0; i < (int) probs_id.size(); i++) {
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
//}
return probs_id [ 0 ] . second ;
}
static std : : string to_timestamp ( int64_t t ) {
int64_t sec = t / 100 ;
int64_t msec = t - sec * 100 ;
int64_t min = sec / 60 ;
sec = sec - min * 60 ;
char buf [ 32 ] ;
snprintf ( buf , sizeof ( buf ) , " %02d:%02d.%03d " , ( int ) min , ( int ) sec , ( int ) msec ) ;
return std : : string ( buf ) ;
}
// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
void dft ( const std : : vector < float > & in , std : : vector < float > & out ) {
int N = in . size ( ) ;
out . resize ( N * 2 ) ;
for ( int k = 0 ; k < N ; k + + ) {
float re = 0 ;
float im = 0 ;
for ( int n = 0 ; n < N ; n + + ) {
float angle = 2 * M_PI * k * n / N ;
re + = in [ n ] * cos ( angle ) ;
im - = in [ n ] * sin ( angle ) ;
}
out [ k * 2 + 0 ] = re ;
out [ k * 2 + 1 ] = im ;
}
}
// Cooley-Tukey FFT
// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
void fft ( const std : : vector < float > & in , std : : vector < float > & out ) {
out . resize ( in . size ( ) * 2 ) ;
int N = in . size ( ) ;
if ( N = = 1 ) {
out [ 0 ] = in [ 0 ] ;
out [ 1 ] = 0 ;
return ;
}
if ( N % 2 = = 1 ) {
dft ( in , out ) ;
return ;
}
std : : vector < float > even ;
std : : vector < float > odd ;
for ( int i = 0 ; i < N ; i + + ) {
if ( i % 2 = = 0 ) {
even . push_back ( in [ i ] ) ;
} else {
odd . push_back ( in [ i ] ) ;
}
}
std : : vector < float > even_fft ;
std : : vector < float > odd_fft ;
fft ( even , even_fft ) ;
fft ( odd , odd_fft ) ;
for ( int k = 0 ; k < N / 2 ; k + + ) {
float theta = 2 * M_PI * k / N ;
float re = cos ( theta ) ;
float im = - sin ( theta ) ;
float re_odd = odd_fft [ 2 * k + 0 ] ;
float im_odd = odd_fft [ 2 * k + 1 ] ;
out [ 2 * k + 0 ] = even_fft [ 2 * k + 0 ] + re * re_odd - im * im_odd ;
out [ 2 * k + 1 ] = even_fft [ 2 * k + 1 ] + re * im_odd + im * re_odd ;
out [ 2 * ( k + N / 2 ) + 0 ] = even_fft [ 2 * k + 0 ] - re * re_odd + im * im_odd ;
out [ 2 * ( k + N / 2 ) + 1 ] = even_fft [ 2 * k + 1 ] - re * im_odd - im * re_odd ;
}
}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
bool log_mel_spectrogram (
const float * samples ,
const int n_samples ,
const int sample_rate ,
const int fft_size ,
const int fft_step ,
const int n_mel ,
const int n_threads ,
const whisper_filters & filters ,
whisper_mel & mel ) {
// Hanning window
std : : vector < float > hann ;
hann . resize ( fft_size ) ;
for ( int i = 0 ; i < fft_size ; i + + ) {
hann [ i ] = 0.5 * ( 1.0 - cos ( ( 2.0 * M_PI * i ) / ( fft_size ) ) ) ;
}
mel . n_mel = n_mel ;
mel . n_len = ( n_samples ) / fft_step ;
mel . data . resize ( mel . n_mel * mel . n_len ) ;
const int n_fft = 1 + fft_size / 2 ;
//printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
//printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
std : : vector < std : : thread > workers ( n_threads ) ;
for ( int iw = 0 ; iw < n_threads ; + + iw ) {
workers [ iw ] = std : : thread ( [ & ] ( int ith ) {
std : : vector < float > fft_in ;
fft_in . resize ( fft_size ) ;
for ( int i = 0 ; i < fft_size ; i + + ) {
fft_in [ i ] = 0.0 ;
}
std : : vector < float > fft_out ;
fft_out . resize ( 2 * fft_size ) ;
for ( int i = ith ; i < mel . n_len ; i + = n_threads ) {
const int offset = i * fft_step ;
// apply Hanning window
for ( int j = 0 ; j < fft_size ; j + + ) {
if ( offset + j < n_samples ) {
fft_in [ j ] = hann [ j ] * samples [ offset + j ] ;
} else {
fft_in [ j ] = 0.0 ;
}
}
// FFT -> mag^2
fft ( fft_in , fft_out ) ;
for ( int j = 0 ; j < fft_size ; j + + ) {
fft_out [ j ] = ( fft_out [ 2 * j + 0 ] * fft_out [ 2 * j + 0 ] + fft_out [ 2 * j + 1 ] * fft_out [ 2 * j + 1 ] ) ;
}
for ( int j = 1 ; j < fft_size / 2 ; j + + ) {
//if (i == 0) {
// printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
//}
fft_out [ j ] + = fft_out [ fft_size - j ] ;
}
if ( i = = 0 ) {
//for (int j = 0; j < fft_size; j++) {
// printf("%d: %e\n", j, fft_out[j]);
//}
}
// mel spectrogram
for ( int j = 0 ; j < mel . n_mel ; j + + ) {
double sum = 0.0 ;
for ( int k = 0 ; k < n_fft ; k + + ) {
sum + = fft_out [ k ] * filters . data [ j * n_fft + k ] ;
}
if ( sum < 1e-10 ) {
sum = 1e-10 ;
}
sum = log10 ( sum ) ;
mel . data [ j * mel . n_len + i ] = sum ;
}
}
} , iw ) ;
}
for ( int iw = 0 ; iw < n_threads ; + + iw ) {
workers [ iw ] . join ( ) ;
}
// clamping and normalization
double mmax = - 1e20 ;
for ( int i = 0 ; i < mel . n_mel * mel . n_len ; i + + ) {
if ( mel . data [ i ] > mmax ) {
mmax = mel . data [ i ] ;
}
}
//printf("%s: max = %f\n", __func__, mmax);
mmax - = 8.0 ;
for ( int i = 0 ; i < mel . n_mel * mel . n_len ; i + + ) {
if ( mel . data [ i ] < mmax ) {
mel . data [ i ] = mmax ;
}
mel . data [ i ] = ( mel . data [ i ] + 4.0 ) / 4.0 ;
}
return true ;
}
//
// interface implementation
//
struct whisper_context * whisper_init ( const char * path_model ) {
ggml_time_init ( ) ;
whisper_context * ctx = new whisper_context ;
const int64_t t_start_us = ggml_time_us ( ) ;
ctx - > t_start_us = t_start_us ;
if ( ! whisper_model_load ( path_model , * ctx ) ) {
fprintf ( stderr , " %s: failed to load model from '%s' \n " , __func__ , path_model ) ;
return NULL ;
}
ctx - > t_load_us = ggml_time_us ( ) - t_start_us ;
return ctx ;
}
void whisper_free ( struct whisper_context * ctx ) {
if ( ctx ) {
delete ctx ;
}
}
int whisper_pcm_to_mel ( struct whisper_context * ctx , const float * samples , int n_samples , int n_threads ) {
const int64_t t_start_us = ggml_time_us ( ) ;
if ( ! log_mel_spectrogram ( samples , n_samples , WHISPER_SAMPLE_RATE , WHISPER_N_FFT , WHISPER_HOP_LENGTH , WHISPER_N_MEL , n_threads , ctx - > model . filters , ctx - > mel ) ) {
fprintf ( stderr , " %s: failed to compute mel spectrogram \n " , __func__ ) ;
return - 1 ;
}
ctx - > t_mel_us = ggml_time_us ( ) - t_start_us ;
return 0 ;
}
int whisper_set_mel (
struct whisper_context * ctx ,
const float * data ,
int n_len ,
int n_mel ) {
if ( n_mel ! = WHISPER_N_MEL ) {
fprintf ( stderr , " %s: invalid number of mel bands: %d (expected %d) \n " , __func__ , n_mel , WHISPER_N_MEL ) ;
return - 1 ;
}
ctx - > mel . n_len = n_len ;
ctx - > mel . n_mel = n_mel ;
ctx - > mel . data . resize ( n_len * n_mel ) ;
memcpy ( ctx - > mel . data . data ( ) , data , n_len * n_mel * sizeof ( float ) ) ;
return 0 ;
}
int whisper_encode ( struct whisper_context * ctx , int offset , int n_threads ) {
const int64_t t_start_us = ggml_time_us ( ) ;
if ( ! whisper_encode ( * ctx , n_threads , offset ) ) {
fprintf ( stderr , " %s: failed to eval \n " , __func__ ) ;
return - 1 ;
}
ctx - > t_encode_us + = ggml_time_us ( ) - t_start_us ;
return 0 ;
}
int whisper_decode ( struct whisper_context * ctx , const whisper_token * tokens , int n_tokens , int n_past , int n_threads ) {
const int64_t t_start_us = ggml_time_us ( ) ;
if ( ! whisper_decode ( * ctx , n_threads , tokens , n_tokens , n_past ) ) {
fprintf ( stderr , " %s: failed to eval \n " , __func__ ) ;
return 1 ;
}
ctx - > t_decode_us + = ggml_time_us ( ) - t_start_us ;
return 0 ;
}
whisper_token whisper_sample_best ( struct whisper_context * ctx , bool need_timestamp ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// TODO: simplify
auto res = whisper_sample_best ( ctx - > vocab , ctx - > probs . data ( ) + ( ctx - > probs . size ( ) - ctx - > vocab . n_vocab ) , need_timestamp ) ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
return res ;
}
whisper_token whisper_sample_timestamp ( struct whisper_context * ctx ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// TODO: simplify
auto res = whisper_sample_timestamp ( ctx - > vocab , ctx - > probs . data ( ) + ( ctx - > probs . size ( ) - ctx - > vocab . n_vocab ) ) ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
return res ;
}
int whisper_lang_id ( const char * lang ) {
if ( ! g_lang . count ( lang ) ) {
fprintf ( stderr , " %s: unknown language '%s' \n " , __func__ , lang ) ;
return - 1 ;
}
return g_lang . at ( lang ) . first ;
}
int whisper_n_len ( struct whisper_context * ctx ) {
return ctx - > mel . n_len ;
}
int whisper_n_vocab ( struct whisper_context * ctx ) {
return ctx - > vocab . n_vocab ;
}
int whisper_n_text_ctx ( struct whisper_context * ctx ) {
return ctx - > model . hparams . n_text_ctx ;
}
int whisper_is_multilingual ( struct whisper_context * ctx ) {
return ctx - > vocab . is_multilingual ( ) ? 1 : 0 ;
}
float * whisper_get_probs ( struct whisper_context * ctx ) {
return ctx - > probs . data ( ) ;
}
const char * whisper_token_to_str ( struct whisper_context * ctx , whisper_token token ) {
return ctx - > vocab . id_to_token . at ( token ) . c_str ( ) ;
}
whisper_token whisper_token_eot ( struct whisper_context * ctx ) {
return ctx - > vocab . token_eot ;
}
whisper_token whisper_token_sot ( struct whisper_context * ctx ) {
return ctx - > vocab . token_sot ;
}
whisper_token whisper_token_prev ( struct whisper_context * ctx ) {
return ctx - > vocab . token_prev ;
}
whisper_token whisper_token_solm ( struct whisper_context * ctx ) {
return ctx - > vocab . token_solm ;
}
whisper_token whisper_token_not ( struct whisper_context * ctx ) {
return ctx - > vocab . token_not ;
}
whisper_token whisper_token_beg ( struct whisper_context * ctx ) {
return ctx - > vocab . token_beg ;
}
whisper_token whisper_token_translate ( ) {
return whisper_vocab : : token_translate ;
}
whisper_token whisper_token_transcribe ( ) {
return whisper_vocab : : token_transcribe ;
}
void whisper_print_timings ( struct whisper_context * ctx ) {
const int64_t t_end_us = ggml_time_us ( ) ;
fprintf ( stderr , " \n " ) ;
fprintf ( stderr , " %s: load time = %8.2f ms \n " , __func__ , ctx - > t_load_us / 1000.0f ) ;
fprintf ( stderr , " %s: mel time = %8.2f ms \n " , __func__ , ctx - > t_mel_us / 1000.0f ) ;
fprintf ( stderr , " %s: sample time = %8.2f ms \n " , __func__ , ctx - > t_sample_us / 1000.0f ) ;
fprintf ( stderr , " %s: encode time = %8.2f ms / %.2f ms per layer \n " , __func__ , ctx - > t_encode_us / 1000.0f , ctx - > t_encode_us / 1000.0f / ctx - > model . hparams . n_audio_layer ) ;
fprintf ( stderr , " %s: decode time = %8.2f ms / %.2f ms per layer \n " , __func__ , ctx - > t_decode_us / 1000.0f , ctx - > t_decode_us / 1000.0f / ctx - > model . hparams . n_text_layer ) ;
fprintf ( stderr , " %s: total time = %8.2f ms \n " , __func__ , ( t_end_us - ctx - > t_start_us ) / 1000.0f ) ;
}
////////////////////////////////////////////////////////////////////////////
struct whisper_full_params whisper_full_default_params ( enum whisper_decode_strategy strategy ) {
struct whisper_full_params result ;
switch ( strategy ) {
case WHISPER_DECODE_GREEDY :
{
result = {
. strategy = WHISPER_DECODE_GREEDY ,
. n_threads = std : : min ( 4 , ( int32_t ) std : : thread : : hardware_concurrency ( ) ) ,
. offset_ms = 0 ,
. translate = false ,
. no_context = false ,
. print_special_tokens = false ,
. print_progress = true ,
. print_realtime = false ,
. print_timestamps = true ,
. language = " en " ,
. greedy = {
. n_past = 0 ,
} ,
} ;
} break ;
case WHISPER_DECODE_BEAM_SEARCH :
{
result = {
. strategy = WHISPER_DECODE_GREEDY ,
. n_threads = std : : min ( 4 , ( int32_t ) std : : thread : : hardware_concurrency ( ) ) ,
. offset_ms = 0 ,
. translate = false ,
. no_context = false ,
. print_special_tokens = false ,
. print_progress = true ,
. print_realtime = false ,
. print_timestamps = true ,
. language = " en " ,
. beam_search = {
. n_past = 0 ,
. beam_width = 10 ,
. n_best = 5 ,
} ,
} ;
} break ;
}
return result ;
}
int whisper_full (
struct whisper_context * ctx ,
struct whisper_full_params params ,
const float * samples ,
int n_samples ) {
// compute log mel spectrogram
if ( whisper_pcm_to_mel ( ctx , samples , n_samples , params . n_threads ) ! = 0 ) {
fprintf ( stderr , " %s: failed to compute log mel spectrogram \n " , __func__ ) ;
return - 1 ;
}
// if length of spectrogram is less than 1s (100 samples), then return
// basically don't process anything that is less than 1s
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
if ( whisper_n_len ( ctx ) < 100 ) {
return 0 ;
}
// the accumulated text context so far
auto & prompt_past = ctx - > prompt_past ;
if ( params . no_context ) {
prompt_past . clear ( ) ;
}
// these tokens determine the task that will be performed
std : : vector < whisper_token > prompt_init = { whisper_token_sot ( ctx ) } ;
if ( whisper_is_multilingual ( ctx ) ) {
prompt_init . push_back ( whisper_token_sot ( ctx ) + 1 + whisper_lang_id ( params . language ) ) ;
if ( params . translate ) {
prompt_init . push_back ( whisper_token_translate ( ) ) ;
} else {
prompt_init . push_back ( whisper_token_transcribe ( ) ) ;
}
}
auto & result_all = ctx - > result_all ;
auto & result_cur = ctx - > result_cur ;
result_all . clear ( ) ;
int progress_prev = 0 ;
int progress_step = 5 ;
// main loop
int seek = params . offset_ms / 10 ;
while ( true ) {
int progress_cur = ( 100 * seek ) / whisper_n_len ( ctx ) ;
while ( progress_cur > = progress_prev + progress_step ) {
progress_prev + = progress_step ;
if ( params . print_progress ) {
fprintf ( stderr , " %s: progress = %3d%% \n " , __func__ , progress_prev ) ;
}
}
if ( seek + 100 > = whisper_n_len ( ctx ) ) {
break ;
}
// encode audio features starting at offset seek
if ( whisper_encode ( ctx , seek , params . n_threads ) ! = 0 ) {
fprintf ( stderr , " %s: failed to encode \n " , __func__ ) ;
return 7 ;
}
std : : vector < whisper_token > prompt ;
int n_past = 0 ;
// if we have already generated some text, use it as a prompt to condition the next generation
if ( prompt_past . size ( ) > 0 ) {
int n_take = std : : min ( whisper_n_text_ctx ( ctx ) / 2 , int ( prompt_past . size ( ) ) ) ;
prompt = { whisper_token_prev ( ctx ) } ;
prompt . insert ( prompt . begin ( ) + 1 , prompt_past . end ( ) - n_take , prompt_past . end ( ) ) ;
prompt_past . clear ( ) ;
prompt_past . insert ( prompt_past . end ( ) , prompt . begin ( ) + 1 , prompt . end ( ) ) ;
}
prompt . insert ( prompt . end ( ) , prompt_init . begin ( ) , prompt_init . end ( ) ) ;
bool done = false ;
int seek_delta = 100 * WHISPER_CHUNK_SIZE ;
// print the prompt
//printf("\n\n");
//for (int i = 0; i < prompt.size(); i++) {
// printf("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token[prompt[i]].c_str());
//}
//printf("\n\n");
// the accumulated transcription in the current interation
int result_len = 0 ;
result_cur . clear ( ) ;
for ( int i = 0 ; i < whisper_n_text_ctx ( ctx ) / 2 - 4 ; + + i ) {
if ( whisper_decode ( ctx , prompt . data ( ) , prompt . size ( ) , n_past , params . n_threads ) ! = 0 ) {
fprintf ( stderr , " %s: failed to decode \n " , __func__ ) ;
return 8 ;
}
n_past + = prompt . size ( ) ;
prompt . clear ( ) ;
// very basic greedy sampling strategy:
//
// - always take the most probable token
//
// more sophisticated sampling strategies could be implemented here, but we keep it simple
// feel free to experiment!
//
{
whisper_token id = 0 ;
whisper_token tid = whisper_token_beg ( ctx ) ;
id = whisper_sample_best ( ctx , result_len = = 0 ) ;
if ( i > 0 ) {
tid = whisper_sample_timestamp ( ctx ) ;
}
// update sliding window
if ( id > whisper_token_beg ( ctx ) ) {
seek_delta = 2 * ( id - whisper_token_beg ( ctx ) ) ;
result_len = i + 1 ;
}
// add it to the context
prompt . push_back ( id ) ;
result_cur . push_back ( { seek + 2 * ( tid - whisper_token_beg ( ctx ) ) , id } ) ;
//printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str());
// end of text token
if ( id = = whisper_token_eot ( ctx ) ) {
if ( result_len = = 0 ) {
result_len = i + 1 ;
}
break ;
}
}
if ( done ) {
break ;
}
}
result_cur . resize ( result_len ) ;
for ( const auto & r : result_cur ) {
prompt_past . push_back ( r . id ) ;
}
// store the text from this iteration
if ( result_cur . size ( ) > 0 ) {
auto t0 = result_cur . front ( ) . t ;
std : : string text = " " ;
for ( int i = 0 ; i < ( int ) result_cur . size ( ) ; i + + ) {
if ( params . print_special_tokens = = false & & result_cur [ i ] . id > = whisper_token_eot ( ctx ) ) {
} else {
text + = whisper_token_to_str ( ctx , result_cur [ i ] . id ) ;
}
if ( result_cur [ i ] . id > whisper_token_beg ( ctx ) ) {
const auto t1 = result_cur [ i ] . t ;
if ( ! text . empty ( ) ) {
if ( params . print_realtime ) {
if ( params . print_timestamps ) {
printf ( " [%s --> %s] %s \n " , to_timestamp ( t0 ) . c_str ( ) , to_timestamp ( t1 ) . c_str ( ) , text . c_str ( ) ) ;
} else {
printf ( " %s " , text . c_str ( ) ) ;
fflush ( stdout ) ;
}
}
result_all . push_back ( { t0 , t1 , text } ) ;
}
text = " " ;
while ( i < ( int ) result_cur . size ( ) & & result_cur [ i ] . id > whisper_token_beg ( ctx ) ) {
i + + ;
}
i - - ;
t0 = result_cur [ i ] . t ;
}
}
if ( ! text . empty ( ) ) {
const auto t1 = seek + seek_delta ;
if ( params . print_realtime ) {
if ( params . print_timestamps ) {
printf ( " [%s --> %s] %s \n " , to_timestamp ( t0 ) . c_str ( ) , to_timestamp ( t1 ) . c_str ( ) , text . c_str ( ) ) ;
} else {
printf ( " %s " , text . c_str ( ) ) ;
fflush ( stdout ) ;
}
}
result_all . push_back ( { t0 , t1 , text } ) ;
}
}
seek + = seek_delta ;
}
return 0 ;
}
int whisper_full_n_segments ( struct whisper_context * ctx ) {
return ctx - > result_all . size ( ) ;
}
int64_t whisper_full_get_segment_t0 ( struct whisper_context * ctx , int i_segment ) {
return ctx - > result_all [ i_segment ] . t0 ;
}
int64_t whisper_full_get_segment_t1 ( struct whisper_context * ctx , int i_segment ) {
return ctx - > result_all [ i_segment ] . t1 ;
}
const char * whisper_full_get_segment_text ( struct whisper_context * ctx , int i_segment ) {
return ctx - > result_all [ i_segment ] . text . c_str ( ) ;
}